Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Fish Physiol Biochem ; 38(1): 107-18, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21728053

RESUMEN

Following the development of demand-feeding systems, many experiments have been conducted to explore feeding motivation and feed intake in farmed fish. This work aims to review a selection of studies in the field, focusing on three key factors, related to demand feeding and fish welfare. Firstly, we outline how demand feeders should be considered when developing feed management strategies for improving welfare in production conditions. Secondly, via laboratory demand-feeding experiments, we show self-feeding activities depend not only on feeding motivation and social organisation, but also on individual learning capacity and risk-taking behaviour. Thirdly, we report encouraging results demonstrating that when presented with two or more self-feeders containing complementary foods, fish select a diet according to their specific nutritional requirements, suggesting that demand feeders could be used to improve welfare by allowing fish to meet their nutritional needs.


Asunto(s)
Bienestar del Animal , Conducta Alimentaria/fisiología , Métodos de Alimentación , Peces/fisiología , Animales , Preferencias Alimentarias
2.
Artículo en Inglés | MEDLINE | ID: mdl-18835359

RESUMEN

In this paper we attempted to investigate the existence of daily fluctuations on plasma sexual steroids (17beta-estradiol, E(2) and testosterone, T) in Senegal sole (Solea senegalensis) females. We described the monthly day/night concentrations and seasonal daily rhythms in animals reared under natural photo- and thermo-period. In addition, the influence of the natural annual fluctuation of the water temperature on the plasma concentration of these steroids was investigated, using one group of Senegal sole under a natural photoperiod, but with an attenuated thermal cycle (around 17-20 degrees C) for one year. Although no significant day/night differences were detected in monthly samplings, the existence of an annual rhythm of E(2) and T (p<0.01) with an acrophase in February was revealed by COSINOR analysis. Maximum values were reached in March for both steroids (6.1+/-1.7 ng mL(-1) at mid-dark, MD and 4.0+/-0.6 ng mL(-1) at mid-light, ML for E2 and 1.4+/-0.4 ng mL(-1) at MD and 0.8+/-0.1 ng mL(-1) at ML for T) in anticipation of the spawning season (May-June). As regards seasonal daily rhythms, the presence of daily oscillations was revealed. At the spring solstice (21st March) a daily rhythm was observed for both steroids (COSINOR, p<0.01), with an acrophase at 20:00 h (E(2)) and at 21:08 h (T). In summer, autumn and winter no daily rhythms were observed due to the low steroid levels at those seasons. When Senegal sole females were submitted to an attenuated annual thermal cycle, the steroid rhythm disappeared (there was no surge in spring, as in the control group) and these fish did not spawn, despite being subjected to natural photoperiod conditions. This result underlined the importance of the natural annual fluctuation of water temperature and photoperiod on the synchronization of the spawning season and on the onset of steroidogenesis.


Asunto(s)
Relojes Biológicos , Ritmo Circadiano , Estradiol/sangre , Peces Planos/metabolismo , Estaciones del Año , Testosterona/sangre , Animales , Ambiente , Femenino , Oviparidad , Oviposición , Fotoperiodo , Agua de Mar , Temperatura
3.
Artículo en Inglés | MEDLINE | ID: mdl-26743958

RESUMEN

The aim of this research was to investigate the presence of daily rhythms in the somatotropic axis of tilapia fed at two times (mid-light, ML or mid-dark, MD) and the influence of the time of day of growth hormone (GH) administration on the response of this axis. Two different GH injection times were tested: ZT 3 (3h after lights on) and ZT 15 (3h after lights off). In both experiments, the mRNA expression levels of hypothalamic pituitary adenylate cyclase-activating polypeptide (pacap), pituitary growth hormone (gh), liver insulin-like growth factors (igf1 and igf2a), and liver and muscle growth hormone receptors (ghr1 and ghr2) and IGF receptors (igf1ra and igf2r) were evaluated by means of qPCR. Daily rhythms were observed in the liver for ghr1, ghr2 and igf2r but only in fish fed at ML, with the acrophases located in the light phase (ZT 3:30, 3:31 and 7:38 h, respectively). In the muscle, ghr1 displayed a significant rhythm in both groups and ghr2 in ML fed fish (acrophases at ZT 5:29, 7:14 and 9:23h). The time of both GH administration and feeding influenced the response to GH injection: ML fed fish injected with GH at ZT 15 h showed a significant increase in liver igf1, igf2a and ghr2; and muscle ghr2 expression. This is the first report that describes the existence of daily rhythms in the somatotropic axis of tilapia and its time-dependent responses of GH administration. Our results should be considered when investigating the elements of the somatotropic axis in tilapia and GH administration.


Asunto(s)
Cíclidos/genética , Proteínas de Peces/genética , Hormona del Crecimiento/administración & dosificación , Animales , Cíclidos/fisiología , Oscuridad , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Receptores de Somatomedina/genética , Receptores de Somatotropina/genética
4.
Chronobiol Int ; 32(8): 1061-74, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26317659

RESUMEN

Light is the main environmental time cue which synchronizes daily rhythms and the molecular clock of vertebrates. Indeed, alterations in photoperiod have profound physiological effects in fish (e.g. reproduction and early development). In order to identify the changes in clock genes expression in gilthead seabream larvae during ontogeny, three different photoperiods were tested: a regular 12L:12D cycle (LD), a continuous light 24L:0D (LL) and a two-phases photoperiod (LL + LD) in which the photoperiod changed from LL to LD on day 15 after hatching (dph). Larvae were sampled on 10, 18, 30 and 60 days post-hatch (dph) during a 24 h cycle. In addition to the expression of clock genes (clock, bmal1, cry1 and per3), food intake was measured. Under LD photoperiod, larvae feed intake and clock genes expression showed a rhythmic pattern with a strong light synchronization, with the acrophases occurring at the same hour in all tested ages. Under LL photoperiod, the larvae also showed a rhythmic pattern but the acrophases occurred at different times depending on the age, although at the end of the experiment (60 dph) clock genes expression and feed intake rhythms were similar to those larvae exposed to LD photoperiod. Moreover, the expression levels of bmal1 and cry1 were much lower than in LD photoperiod. Under the LL + LD photoperiod, the 10 dph larvae showed the same patterns as LL treatment while 18 and 30 dph larvae showed the same patterns as LD treatment. These results revealed the presence of internal factors driving rhythmic physiological responses during larvae development under constant environmental conditions. The LL + LD treatment demonstrates the plasticity of the clock genes expression and the strong effect of light as synchronizer in developing fish larvae.


Asunto(s)
Conducta Animal/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Conducta Alimentaria/fisiología , Expresión Génica/fisiología , Luz , Animales , Femenino , Actividad Motora/fisiología , Fotoperiodo , Dorada/crecimiento & desarrollo , Factores de Tiempo
5.
Zoolog Sci ; 21(4): 427-34, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15118230

RESUMEN

Characteristics, day-night changes, guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) modulation, and localization of melatonin binding sites in the brain of a marine teleost, European sea bass Dicentrarchus labrax, were studied by radioreceptor assay using 2-[(125)I]iodomelatonin as a radioligand. The specific binding to the sea bass brain membranes was rapid, stable, saturable and reversible. The radioligand binds to a single class of receptor site with the affinity (Kd) of 9.3 +/-0.6 pM and total binding capacity (Bmax) of 39.08 +/-0.86 fmol/mg protein (mean+/-SEM, n=4) at mid-light under light-dark (LD) cycles of 12:12. Day-night changes were observed neither in the Kd nor in the Bmax under LD 12:12. Treatment with GTPgammaS significantly increased the Kd and decreased the Bmax both at mid-light and mid-dark. The binding sites were highly specific for 2-phenylmelatonin, 2-iodomelatonin, melatonin, and 6-chloromelatonin. Distribution of melatonin binding sites in the sea bass brain was uneven: The Bmax was determined to be highest in mesencephalic optic tectum-tegmentum and hypothalamus, intermediate in telencephalon, cerebellum-vestibulolateral lobe and medulla oblongata-spinal cord, and lowest in olfactory bulbs with the Kd in the low picomolar range. These results indicate that melatonin released from the pineal organ and/or retina plays neuromodulatory roles in the sea bass brain via G protein-coupled melatonin receptors.


Asunto(s)
Lubina/metabolismo , Encéfalo/metabolismo , Melatonina/metabolismo , Animales , Lubina/fisiología , Sitios de Unión/fisiología , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Radioisótopos de Yodo , Cinética , Fotoperiodo , Ensayo de Unión Radioligante
6.
Chronobiol Int ; 31(5): 613-26, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24517141

RESUMEN

This research aimed at investigating circadian rhythm expression of key genes involved in lipid metabolism in the liver of a teleost fish (Sparus aurata), and their synchronisation to different light-dark (L-D) and feeding cycles. To this end, 90 gilthead sea bream were kept in 12:12 h (light:dark, LD, lights on at ZT0) and fed a single daily meal at mid-light (ML = ZT6), mid-darkness (MD = ZT18) and randomly (RD) at a 1.5% body weight ration. A total of 18 tanks were used, six tanks per feeding treatment with five fishes per tank; locomotor activity was recorded in each tank. After 25 days of synchronisation to these feeding regimes, fishes were fasted for one day and liver samples were taken every 4 hours during a 24 h cycle (ZT2, 6, 10, 14, 18 and 22) and stored at -80 °C until analysis. To determine whether the rhythm expression presented an endogenous control, another experiment was performed using 30 fish kept in complete darkness and fed randomly (DD/RD). Samples were taken following the same procedure as above. The results revealed that all genes investigated exhibited well defined daily rhythms. The lipolysis-related and fatty acid turnover genes (hormone-sensitive lipase (hsl) and peroxisome proliferator-activated receptor-α (pparα)) exhibited a nocturnal achrophase (Ø = ZT18:03-19:21); lipoprotein lipase (lpl) also showed the same nocturnal achrophase (Ø = ZT20:04-21:36). In contrast, lipogenesis-related gene, fatty acid synthase (fas), and of fatty acid turnover, cyclooxygenase (cox-2), showed a diurnal rhythm (Ø = ZT2:27-8:09); while pparγ was nocturnal (Ø = ZT16:16-18:05). Curiously, feeding time had little influence on the phase of these daily rhythms, since all feeding groups displayed similar achrophases. Furthermore, under constant conditions pparα and hsl showed circadian rhythmicity. These findings suggest that lipid utilisation in the liver is rhythmic and strongly synchronised to the LD cycle, regardless of feeding time, which should be taken into consideration when investigating fish nutrition and the design of feeding protocols.


Asunto(s)
Ritmo Circadiano/efectos de la radiación , Conducta Alimentaria , Proteínas de Peces/genética , Luz , Metabolismo de los Lípidos/efectos de la radiación , Hígado/efectos de la radiación , Fotoperiodo , Dorada/genética , Animales , Ritmo Circadiano/genética , Oscuridad , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica/efectos de la radiación , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Actividad Motora/efectos de la radiación , Dorada/metabolismo , Natación , Factores de Tiempo
7.
PLoS One ; 8(6): e67858, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23840779

RESUMEN

The day-night and seasonal cycles are dominated by regular changes in the intensity as well as spectral composition of sunlight. In aquatic environments the spectrum of sunlight is also strongly affected by the depth and quality of water. During evolution, organisms have adopted various key strategies in order to adapt to these changes, including the development of clocks and photoreceptor mechanisms. These mechanisms enable the detection and anticipation of regular changes in lighting conditions and thereby direct an appropriate physiological response. In teleosts, a growing body of evidence points to most cell types possessing complex photoreceptive systems. However, our understanding of precisely how these systems are regulated and in turn dictate changes in gene expression remains incomplete. In this manuscript we attempt to unravel this complexity by comparing the effects of two specific wavelengths of light upon signal transduction and gene expression regulatory mechanisms in zebrafish cells. We reveal a significant difference in the kinetics of light-induced gene expression upon blue and red light exposure. Importantly, both red and blue light-induced gene expression relies upon D-box enhancer promoter elements. Using pharmacological and genetic approaches we demonstrate that the ERK/MAPK pathway acts as a negative regulator of blue but not red light activated transcription. Thus, we reveal that D-box-driven gene expression is regulated via ERK/MAPK signaling in a strongly wavelength-dependent manner.


Asunto(s)
Regulación de la Expresión Génica/efectos de la radiación , Luz , Sistema de Señalización de MAP Quinasas/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Pez Cebra/genética , Animales , Regiones Promotoras Genéticas/genética , Transducción de Señal/efectos de la radiación , Pez Cebra/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA