Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Neuroimage ; 230: 117707, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33385560

RESUMEN

BACKGROUND: In Alzheimer`s disease (AD), regional heterogeneity of ß-amyloid burden and microglial activation of individual patients is a well-known phenomenon. Recently, we described a high incidence of inter-individual regional heterogeneity in terms of asymmetry of plaque burden and microglial activation in ß-amyloid mouse models of AD as assessed by positron-emission-tomography (PET). We now investigate the regional associations between amyloid plaque burden, microglial activation, and impaired spatial learning performance in transgenic mice in vivo. METHODS: In 30 AppNL-G-F mice (15 female, 15 male) we acquired cross-sectional 18 kDa translocator protein (TSPO-PET, 18F-GE-180) and ß-amyloid-PET (18F-florbetaben) scans at ten months of age. Control data were obtained from age- and sex-matched C57BI/6 wild-type mice. We assessed spatial learning (i.e. Morris water maze) within two weeks of PET scanning and correlated the principal component of spatial learning performance scores with voxel-wise ß-amyloid and TSPO tracer uptake maps in AppNL-G-F mice, controlled for age and sex. In order to assess the effects of hemispheric asymmetry, we also analyzed correlations of spatial learning performance with tracer uptake in bilateral regions of interest for frontal cortex, entorhinal/piriform cortex, amygdala, and hippocampus, using a regression model. We tested the correlation between regional asymmetry of PET biomarkers with individual spatial learning performance. RESULTS: Voxel-wise analyses in AppNL-G-F mice revealed that higher TSPO-PET signal in the amygdala, entorhinal and piriform cortices, the hippocampus and the hypothalamus correlated with spatial learning performance. Region-based analysis showed significant correlations between TSPO expression in the right entorhinal/piriform cortex and the right amygdala and spatial learning performance, whereas there were no such correlations in the left hemisphere. Right lateralized TSPO expression in the amygdala predicted better performance in the Morris water maze (ß = -0.470, p = 0.013), irrespective of the global microglial activation and amyloid level. Region-based results for amyloid-PET showed no significant associations with spatial learning. CONCLUSION: Elevated microglial activation in the right amygdala-entorhinal-hippocampal complex of AppNL-G-F mice is associated with better spatial learning. Our findings support a protective role of microglia on cognitive function when they highly express TSPO in specific brain regions involved in spatial memory.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Precursor de Proteína beta-Amiloide/biosíntesis , Corteza Entorrinal/metabolismo , Hipocampo/metabolismo , Microglía/metabolismo , Aprendizaje Espacial/fisiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/biosíntesis , Receptores de GABA/genética
2.
J Neuroinflammation ; 17(1): 208, 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32660586

RESUMEN

BACKGROUND: P301S tau transgenic mice show age-dependent accumulation of neurofibrillary tangles in the brainstem, hippocampus, and neocortex, leading to neuronal loss and cognitive deterioration. However, there is hitherto only sparse documentation of the role of neuroinflammation in tau mouse models. Thus, we analyzed longitudinal microglial activation by small animal 18 kDa translocator protein positron-emission-tomography (TSPO µPET) imaging in vivo, in conjunction with terminal assessment of tau pathology, spatial learning, and cerebral glucose metabolism. METHODS: Transgenic P301S (n = 33) and wild-type (n = 18) female mice were imaged by 18F-GE-180 TSPO µPET at the ages of 1.9, 3.9, and 6.4 months. We conducted behavioral testing in the Morris water maze, 18F-fluordesoxyglucose (18F-FDG) µPET, and AT8 tau immunohistochemistry at 6.3-6.7 months. Terminal microglial immunohistochemistry served for validation of TSPO µPET results in vivo, applying target regions in the brainstem, cortex, cerebellum, and hippocampus. We compared the results with our historical data in amyloid-ß mouse models. RESULTS: TSPO expression in all target regions of P301S mice increased exponentially from 1.9 to 6.4 months, leading to significant differences in the contrasts with wild-type mice at 6.4 months (+ 11-23%, all p < 0.001), but the apparent microgliosis proceeded more slowly than in our experience in amyloid-ß mouse models. Spatial learning and glucose metabolism of AT8-positive P301S mice were significantly impaired at 6.3-6.5 months compared to the wild-type group. Longitudinal increases in TSPO expression predicted greater tau accumulation and lesser spatial learning performance at 6.3-6.7 months. CONCLUSIONS: Monitoring of TSPO expression as a surrogate of microglial activation in P301S tau transgenic mice by µPET indicates a delayed time course when compared to amyloid-ß mouse models. Detrimental associations of microglial activation with outcome parameters are opposite to earlier data in amyloid-ß mouse models. The contribution of microglial response to pathology accompanying amyloid-ß and tau over-expression merits further investigation.


Asunto(s)
Encéfalo/metabolismo , Receptores de GABA/biosíntesis , Aprendizaje Espacial/fisiología , Proteínas tau/metabolismo , Animales , Encéfalo/patología , Femenino , Predicción , Expresión Génica , Ratones , Ratones Transgénicos , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Receptores de GABA/genética , Proteínas tau/genética
3.
J Neuroinflammation ; 17(1): 374, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33317543

RESUMEN

BACKGROUND: In vivo assessment of neuroinflammation by 18-kDa translocator protein positron-emission-tomography (TSPO-PET) ligands receives growing interest in preclinical and clinical research of neurodegenerative disorders. Higher TSPO-PET binding as a surrogate for microglial activation in females has been reported for cognitively normal humans, but such effects have not yet been evaluated in rodent models of neurodegeneration and their controls. Thus, we aimed to investigate the impact of sex on microglial activation in amyloid and tau mouse models and wild-type controls. METHODS: TSPO-PET (18F-GE-180) data of C57Bl/6 (wild-type), AppNL-G-F (ß-amyloid model), and P301S (tau model) mice was assessed longitudinally between 2 and 12 months of age. The AppNL-G-F group also underwent longitudinal ß-amyloid-PET imaging (Aß-PET; 18F-florbetaben). PET results were confirmed and validated by immunohistochemical investigation of microglial (Iba-1, CD68), astrocytic (GFAP), and tau (AT8) markers. Findings in cerebral cortex were compared by sex using linear mixed models for PET data and analysis of variance for immunohistochemistry. RESULTS: Wild-type mice showed an increased TSPO-PET signal over time (female +23%, male +4%), with a significant sex × age interaction (T = - 4.171, p < 0.001). The Aß model AppNL-G-F mice also showed a significant sex × age interaction (T = - 2.953, p = 0.0048), where cortical TSPO-PET values increased by 31% in female AppNL-G-F mice, versus only 6% in the male mice group from 2.5 to 10 months of age. Immunohistochemistry for the microglial markers Iba-1 and CD68 confirmed the TSPO-PET findings in male and female mice aged 10 months. Aß-PET in the same AppNL-G-F mice indicated no significant sex × age interaction (T = 0.425, p = 0.673). The P301S tau model showed strong cortical increases of TSPO-PET from 2 to 8.5 months of age (female + 32%, male + 36%), without any significant sex × age interaction (T = - 0.671, p = 0.504), and no sex differences in Iba-1, CD68, or AT8 immunohistochemistry. CONCLUSION: Female mice indicate sex-dependent microglia activation in aging and in response to amyloidosis but not in response to tau pathology. This calls for consideration of sex difference in TSPO-PET studies of microglial activation in mouse models of neurodegeneration and by extension in human studies.


Asunto(s)
Amiloidosis/metabolismo , Modelos Animales de Enfermedad , Enfermedades Neurodegenerativas/metabolismo , Neuroglía/metabolismo , Caracteres Sexuales , Proteínas tau/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología , Amiloidosis/genética , Amiloidosis/patología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Neuroglía/patología , Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/tendencias , Proteínas tau/genética
4.
J Nucl Med ; 63(1): 117-124, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34016733

RESUMEN

ß-amyloid (Aß) PET is an important tool for quantification of amyloidosis in the brain of suspected Alzheimer disease (AD) patients and transgenic AD mouse models. Despite the excellent correlation of Aß PET with gold standard immunohistochemical assessments, the relative contributions of fibrillar and nonfibrillar Aß components to the in vivo Aß PET signal remain unclear. Thus, we obtained 2 murine cerebral amyloidosis models that present with distinct Aß plaque compositions and performed regression analysis between immunohistochemistry and Aß PET to determine the biochemical contributions to Aß PET signal in vivo. Methods: We investigated groups of AppNL-G-F and APPPS1 mice at 3, 6, and 12 mo of age by longitudinal 18F-florbetaben Aß PET and with immunohistochemical analysis of the fibrillar and total Aß burdens. We then applied group-level intermodality regression models using age- and genotype-matched sets of fibrillar and nonfibrillar Aß data (predictors) and Aß PET results (outcome) for both Aß mouse models. An independent group of double-hit APPPS1 mice with dysfunctional microglia due to knockout of triggering receptor expression on myeloid cells 2 (Trem2-/-) served for validation and evaluation of translational impact. Results: Neither fibrillar nor nonfibrillar Aß content alone sufficed to explain the Aß PET findings in either AD model. However, a regression model compiling fibrillar and nonfibrillar Aß together with the estimate of individual heterogeneity and age at scanning could explain a 93% of variance of the Aß PET signal (P < 0.001). Fibrillar Aß burden had a 16-fold higher contribution to the Aß PET signal than nonfibrillar Aß. However, given the relatively greater abundance of nonfibrillar Aß, we estimate that nonfibrillar Aß produced 79% ± 25% of the net in vivo Aß PET signal in AppNL-G-F mice and 25% ± 12% in APPPS1 mice. Corresponding results in separate groups of APPPS1/Trem2-/- and APPPS1/Trem2+/+ mice validated the calculated regression factors and revealed that the altered fibrillarity due to Trem2 knockout impacts the Aß PET signal. Conclusion: Taken together, the in vivo Aß PET signal derives from the composite of fibrillar and nonfibrillar Aß plaque components. Although fibrillar Aß has inherently higher PET tracer binding, the greater abundance of nonfibrillar Aß plaque in AD-model mice contributes importantly to the PET signal.


Asunto(s)
Placa Amiloide
5.
Front Aging Neurosci ; 14: 854031, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431893

RESUMEN

We undertook longitudinal ß-amyloid positron emission tomography (Aß-PET) imaging as a translational tool for monitoring of chronic treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone in Aß model mice. We thus tested the hypothesis this treatment would rescue from increases of the Aß-PET signal while promoting spatial learning and preservation of synaptic density. Here, we investigated longitudinally for 5 months PS2APP mice (N = 23; baseline age: 8 months) and App NL-G-F mice (N = 37; baseline age: 5 months) using Aß-PET. Groups of mice were treated with pioglitazone or vehicle during the follow-up interval. We tested spatial memory performance and confirmed terminal PET findings by immunohistochemical and biochemistry analyses. Surprisingly, Aß-PET and immunohistochemistry revealed a shift toward higher fibrillary composition of Aß-plaques during upon chronic pioglitazone treatment. Nonetheless, synaptic density and spatial learning were improved in transgenic mice with pioglitazone treatment, in association with the increased plaque fibrillarity. These translational data suggest that a shift toward higher plaque fibrillarity protects cognitive function and brain integrity. Increases in the Aß-PET signal upon immunomodulatory treatments targeting Aß aggregation can thus be protective.

6.
Theranostics ; 11(18): 8964-8976, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34522221

RESUMEN

Modulation of the innate immune system is emerging as a promising therapeutic strategy against Alzheimer's disease (AD). However, determinants of a beneficial therapeutic effect are ill-understood. Thus, we investigated the potential of 18 kDa translocator protein positron-emission-tomography (TSPO-PET) for assessment of microglial activation in mouse brain before and during chronic immunomodulation. Methods: Serial TSPO-PET was performed during five months of chronic microglia modulation by stimulation of the peroxisome proliferator-activated receptor (PPAR)-γ with pioglitazone in two different mouse models of AD (PS2APP, AppNL-G-F ). Using mixed statistical models on longitudinal TSPO-PET data, we tested for effects of therapy and sex on treatment response. We tested correlations of baseline with longitudinal measures of TSPO-PET, and correlations between PET results with spatial learning performance and ß-amyloid accumulation of individual mice. Immunohistochemistry was used to determine the molecular source of the TSPO-PET signal. Results: Pioglitazone-treated female PS2APP and AppNL-G-F mice showed attenuation of the longitudinal increases in TSPO-PET signal when compared to vehicle controls, whereas treated male AppNL-G-F mice showed the opposite effect. Baseline TSPO-PET strongly predicted changes in microglial activation in treated mice (R = -0.874, p < 0.0001) but not in vehicle controls (R = -0.356, p = 0.081). Reduced TSPO-PET signal upon pharmacological treatment was associated with better spatial learning despite higher fibrillar ß-amyloid accumulation. Immunohistochemistry confirmed activated microglia to be the source of the TSPO-PET signal (R = 0.952, p < 0.0001). Conclusion: TSPO-PET represents a sensitive biomarker for monitoring of immunomodulation and closely reflects activated microglia. Sex and pre-therapeutic assessment of baseline microglial activation predict individual immunomodulation effects and may serve for responder stratification.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , Receptores de GABA/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Inmunidad Innata/inmunología , Inmunomodulación/inmunología , Inmunomodulación/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , PPAR gamma/efectos de los fármacos , PPAR gamma/metabolismo , Pioglitazona/farmacología , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/fisiología , Factores Sexuales
7.
EMBO Mol Med ; 12(9): e12308, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32790063

RESUMEN

Microglia activation is the brain's major immune response to amyloid plaques in Alzheimer's disease (AD). Both cerebrospinal fluid (CSF) levels of soluble TREM2 (sTREM2), a biomarker of microglia activation, and microglia PET are increased in AD; however, whether an increase in these biomarkers is associated with reduced amyloid-beta (Aß) accumulation remains unclear. To address this question, we pursued a two-pronged translational approach. Firstly, in non-demented and demented individuals, we tested CSF sTREM2 at baseline to predict (i) amyloid PET changes over ∼2 years and (ii) tau PET cross-sectionally assessed in a subset of patients. We found higher CSF sTREM2 associated with attenuated amyloid PET increase and lower tau PET. Secondly, in the AppNL-G-F mouse model of amyloidosis, we studied baseline 18 F-GE180 microglia PET and longitudinal amyloid PET to test the microglia vs. Aß association, without any confounding co-pathologies often present in AD patients. Higher microglia PET at age 5 months was associated with a slower amyloid PET increase between ages 5-to-10 months. In conclusion, higher microglia activation as determined by CSF sTREM2 or microglia PET shows protective effects on subsequent amyloid accumulation.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Animales , Biomarcadores , Humanos , Glicoproteínas de Membrana , Ratones , Microglía , Receptores Inmunológicos , Proteínas tau
8.
J Nucl Med ; 61(12): 1825-1831, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32414948

RESUMEN

Asymmetries of amyloid-ß (Aß) burden are well known in Alzheimer disease (AD) but did not receive attention in Aß mouse models of Alzheimer disease. Therefore, we investigated Aß asymmetries in Aß mouse models examined by Aß small-animal PET and tested if such asymmetries have an association with microglial activation. Methods: We analyzed 523 cross-sectional Aß PET scans of 5 different Aß mouse models (APP/PS1, PS2APP, APP-SL70, AppNL-G-F , and APPswe) together with 136 18-kDa translocator protein (TSPO) PET scans for microglial activation. The asymmetry index (AI) was calculated between tracer uptake in both hemispheres. AIs of Aß PET were analyzed in correlation with TSPO PET AIs. Extrapolated required sample sizes were compared between analyses of single and combined hemispheres. Results: Relevant asymmetries of Aß deposition were identified in at least 30% of all investigated mice. There was a significant correlation between AIs of Aß PET and TSPO PET in 4 investigated Aß mouse models (APP/PS1: R = 0.593, P = 0.001; PS2APP: R = 0.485, P = 0.019; APP-SL70: R = 0.410, P = 0.037; AppNL-G-F : R = 0.385, P = 0.002). Asymmetry was associated with higher variance of tracer uptake in single hemispheres, leading to higher required sample sizes. Conclusion: Asymmetry of fibrillar plaque neuropathology occurs frequently in Aß mouse models and acts as a potential confounder in experimental designs. Concomitant asymmetry of microglial activation indicates a neuroinflammatory component to hemispheric predominance of fibrillary amyloidosis.


Asunto(s)
Péptidos beta-Amiloides/química , Placa Amiloide/metabolismo , Agregado de Proteínas , Animales , Modelos Animales de Enfermedad , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Endogámicos C57BL , Placa Amiloide/diagnóstico por imagen , Tomografía de Emisión de Positrones
9.
Cells ; 8(9)2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31484353

RESUMEN

Brain volume measurement is one of the most frequently used biomarkers to establish neuroprotective effects during pre-clinical multiple sclerosis (MS) studies. Furthermore, whole-brain atrophy estimates in MS correlate more robustly with clinical disability than traditional, lesion-based metrics. However, the underlying mechanisms leading to brain atrophy are poorly understood, partly due to the lack of appropriate animal models to study this aspect of the disease. The purpose of this study was to assess brain volumes and neuro-axonal degeneration after acute and chronic cuprizone-induced demyelination. C57BL/6 male mice were intoxicated with cuprizone for up to 12 weeks. Brain volume, as well as total numbers and densities of neurons, were determined using design-based stereology. After five weeks of cuprizone intoxication, despite severe demyelination, brain volumes were not altered at this time point. After 12 weeks of cuprizone intoxication, a significant volume reduction was found in the corpus callosum and diverse subcortical areas, particularly the internal capsule and the thalamus. Thalamic volume loss was accompanied by glucose hypermetabolism, analyzed by [18F]-fluoro-2-deoxy-d-glucose (18F-FDG) positron-emission tomography. This study demonstrates region-specific brain atrophy of different subcortical brain regions after chronic cuprizone-induced demyelination. The chronic cuprizone demyelination model in male mice is, thus, a useful tool to study the underlying mechanisms of subcortical brain atrophy and to investigate the effectiveness of therapeutic interventions.


Asunto(s)
Encéfalo/patología , Esclerosis Múltiple/patología , Animales , Atrofia , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Quelantes/toxicidad , Cuprizona/toxicidad , Fluorodesoxiglucosa F18 , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/etiología , Tomografía de Emisión de Positrones , Radiofármacos
10.
J Nucl Med ; 60(12): 1787-1793, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31302633

RESUMEN

Nonphysiologic overexpression of amyloid-ß (Aß) precursor protein in common transgenic Aß mouse models of Alzheimer disease likely hampers their translational potential. The novel AppNL-G-F mouse incorporates a mutated knock-in, potentially presenting an improved model of Alzheimer disease for Aß-targeting treatment trials. We aimed to establish serial small-animal PET of amyloidosis and neuroinflammation in AppNL-G-F mice as a tool for therapy monitoring. Methods:AppNL-G-F mice (20 homozygous and 21 heterogeneous) and 12 age-matched wild-type mice were investigated longitudinally from 2.5 to 10 mo of age with 18F-florbetaben Aß PET and 18F-GE-180 18-kDa translocator protein (TSPO) PET. Voxelwise analysis of SUV ratio images was performed using statistical parametric mapping. All mice underwent a Morris water maze test of spatial learning after their final scan. Quantification of fibrillar Aß and activated microglia by immunohistochemistry and biochemistry served for validation of the PET results. Results: The periaqueductal gray emerged as a suitable pseudo reference tissue for both tracers. Homozygous AppNL-G-F mice had a rising SUV ratio in cortex and hippocampus for Aß (+9.1%, +3.8%) and TSPO (+19.8%, +14.2%) PET from 2.5 to 10 mo of age (all P < 0.05), whereas heterozygous AppNL-G-F mice did not show significant changes with age. Significant voxelwise clusters of Aß deposition and microglial activation in homozygous mice appeared at 5 mo of age. Immunohistochemical and biochemical findings correlated strongly with the PET data. Water maze escape latency was significantly elevated in homozygous AppNL-G-F mice compared with wild-type at 10 mo of age and was associated with high TSPO binding. Conclusion: Longitudinal PET in AppNL-G-F knock-in mice enables monitoring of amyloidogenesis and neuroinflammation in homozygous mice but is insensitive to minor changes in heterozygous animals. The combination of PET with behavioral tasks in AppNL-G-F treatment trials is poised to provide important insights in preclinical drug development.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Amiloidosis/diagnóstico por imagen , Amiloidosis/patología , Microglía/patología , Tomografía de Emisión de Positrones , Animales , Modelos Animales de Enfermedad , Femenino , Estudios Longitudinales , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA