Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Cell Biol ; 24(16): 6967-79, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15282298

RESUMEN

Phosphorylation is the main mode by which signals are transmitted to key regulators of developmental pathways. The glycogen synthase kinase 3 family plays pivotal roles in the development and well-being of all eukaryotic organisms. Similarly, the budding yeast homolog Rim11 is essential for the exit of diploid cells from the cell cycle and for entry into the meiotic developmental pathway. In this report we show that in vivo, in cells grown in a medium promoting vegetative growth with acetate as the sole carbon source (SA medium), Rim11 phosphorylates Ime1, the master transcriptional activator required for entry into the meiotic cycle and for the transcription of early meiosis-specific genes. We demonstrate that in the presence of glucose, the kinase activity of Rim11 is inhibited. This inhibition could be due to phosphorylation on Ser-5, Ser-8, and/or Ser-12 because in the rim11S5AS8AS12A mutant, Ime1 is incorrectly phosphorylated in the presence of glucose and cells undergo sporulation. We further show that this nutrient signal is transmitted to Rim11 and consequently to Ime1 by the cyclic AMP/protein kinase A signal transduction pathway. Ime1 is phosphorylated in SA medium on at least two residues, Tyr-359 and Ser-302 and/or Ser-306. Ser-302 and Ser-306 are part of a consensus site for the mammalian homolog of Rim11, glycogen synthase kinase 3-beta. Phosphorylation on Tyr-359 but not Ser-302 or Ser-306 is essential for the transcription of early meiosis-specific genes and sporulation. We show that Tyr-359 is phosphorylated by Rim11.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Meiosis/fisiología , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Sistemas de Mensajero Secundario/fisiología , Factores de Transcripción/metabolismo , Acetatos/metabolismo , Medios de Cultivo/química , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Péptidos y Proteínas de Señalización Intracelular , Nitrógeno/metabolismo , Proteínas Nucleares/genética , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Técnicas del Sistema de Dos Híbridos , Tirosina/metabolismo
2.
Mol Biol Cell ; 15(5): 2230-42, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15004237

RESUMEN

In all eukaryotes, the initiation of DNA replication is regulated by the ordered assembly of DNA/protein complexes on origins of DNA replication. In this report, we examine the role of Cdc6, a component of the prereplication complex, in the initiation of premeiotic DNA replication in budding yeast. We show that in the meiotic cycle, Cdc6 is required for DNA synthesis and sporulation. Moreover, similarly to the regulation in the mitotic cell cycle, Cdc6 is specifically degraded upon entry into the meiotic S phase. By contrast, chromatin-immunoprecipitation analysis reveals that the origin-bound Cdc6 is stable throughout the meiotic cycle. Preliminary evidence suggests that this protection reflects a change in chromatin structure that occurs in meiosis. Using the cdc28-degron allele, we show that depletion of Cdc28 leads to stabilization of Cdc6 in the mitotic cycle, but not in the meiotic cycle. We show physical association between Cdc6 and the meiosis-specific hCDK2 homolog Ime2. These results suggest that under meiotic conditions, Ime2, rather than Cdc28, regulates the stability of Cdc6. Chromatin-immunoprecipitation analysis reveals that similarly to the mitotic cell cycle, Mcm2 binds origins in G1 and meiotic S phases, and at the end of the second meiotic division, it is gradually removed from chromatin.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Replicación del ADN/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona , Replicación del ADN/genética , Proteínas de Unión al ADN , Citometría de Flujo , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular , Meiosis/efectos de los fármacos , Meiosis/fisiología , Mitosis/efectos de los fármacos , Mitosis/fisiología , Nocodazol/farmacología , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Origen de Réplica , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas del Sistema de Dos Híbridos
3.
Int Rev Cytol ; 224: 111-71, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12722950

RESUMEN

Initiation of meiosis in Saccharomyces cerevisiae is regulated by mating type and nutritional conditions that restrict meiosis to diploid cells grown under starvation conditions. Specifically, meiosis occurs in MATa/MATalpha cells shifted to nitrogen depletion media in the absence of glucose and the presence of a nonfermentable carbon source. These conditions lead to the expression and activation of Ime 1, the master regulator of meiosis. IME1 encodes a transcriptional activator recruited to promoters of early meiosis-specific genes by association with the DNA-binding protein, Ume6. Under vegetative growth conditions these genes are silent due to recruitment of the Sin3/Rpd3 histone deacetylase and Isw2 chromatin remodeling complexes by Ume6. Transcription of these meiotic genes occurs following histone acetylation by Gcn5. Expression of the early genes promote entry into the meiotic cycle, as they include genes required for premeiotic DNA synthesis, synapsis of homologous chromosomes, and meiotic recombination. Two of the early meiosis specific genes, a transcriptional activator, Ndt80, and a CDK2 homologue, Ime2, are required for the transcription of middle meiosis-specific genes that are involved with nuclear division and spore formation. Spore maturation depends on late genes whose expression is indirectly dependent on Ime1, Ime2, and Ndt80. Finally, phosphorylation of Imel by Ime2 leads to its degradation, and consequently to shutting down of the meiotic transcriptional cascade. This review is focusing on the regulation of gene expression governing initiation and progression through meiosis.


Asunto(s)
Regulación Fúngica de la Expresión Génica/genética , Genes Reguladores/genética , Meiosis/genética , Saccharomyces cerevisiae/genética , Transcripción Genética/genética , Retroalimentación Fisiológica/genética , Proteínas Nucleares/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Factores de Transcripción/genética
4.
PLoS One ; 8(12): e85088, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24358376

RESUMEN

In budding yeasts, the histone deacetylase Rpd3 resides in two different complexes called Rpd3L (large) and Rpd3S (small) that exert opposing effects on the transcription of meiosis-specific genes. By introducing mutations that disrupt the integrity and function of either Rpd3L or Rpd3S, we show here that Rpd3 function is determined by its association with either of these complexes. Specifically, the catalytic activity of Rpd3S activates the transcription of the two major positive regulators of meiosis, IME1 and IME2, under all growth conditions and activates the transcription of NDT80 only during vegetative growth. In contrast, the effects of Rpd3L depends on nutrients; it represses or activates transcription in the presence or absence of a nitrogen source, respectively. Further, we show that transcriptional activation does not correlate with histone H4 deacetylation, suggesting an effect on a nonhistone protein. Comparison of rpd3-null and catalytic-site point mutants revealed an inhibitory activity that is independent of either the catalytic activity of Rpd3 or the integrity of Rpd3L and Rpd3S.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Saccharomycetales/genética , Saccharomycetales/metabolismo , Transcripción Genética , Acetilación , Carbono/metabolismo , Eliminación de Gen , Expresión Génica , Genes Reporteros , Histonas/metabolismo , Meiosis , Unión Proteica , Activación Transcripcional
5.
Cell Cycle ; 9(23): 4711-9, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21099355

RESUMEN

Entry into and precise progression through the cell cycle depends on the sequential expression and activation of cyclin dependent kinases (CDK). In accord, CDK dysregulation is a hallmark of many cancers. The function of Cdk2 is still an enigma as in vitro studies revealed that it is required for S phase-entry, whereas in vivo studies showed that Cdk2 is not an essential gene. Moreover, unlike other Cdks, or its cyclin E regulator, Cdk2-overexpressing tumors were reported only in one type of tumor. In this report we used budding yeast as a tool to explore Cdk2 function. We showed that hCdk2 promoted S phase in cells carrying a temperature-sensitive mutation in yCDK1, albeit, only when expressed at low or moderate levels. Overexpression of hCdk2 resulted in a defect in the G1 to S transition and a reduction in viability. The same phenotypes were observed in cells overexpressing its yeast functional homolog, Ime2, which is a meiosis-specific CDK-like kinase. A genetic interaction with the DNA damage checkpoint was demonstrated by showing an increased toxicity of hCdk2 and Ime2 in RAD53-deleted cells, and delayed Rad53 activation in response to MMS treatment in cells overexpressing hCdk2 or Ime2.


Asunto(s)
Quinasa 2 Dependiente de la Ciclina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Quinasa 2 Dependiente de la Ciclina/genética , Daño del ADN , Fase G1 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Meiosis , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Fase S , Proteínas de Saccharomyces cerevisiae/genética
6.
Cell Cycle ; 8(4): 647-54, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19197163

RESUMEN

Progression through the cell cycle depends on sequential activation of Cyclin-Dependent Kinase(s). In this report we use budding-yeast meiosis as a tool to elucidate the specific functions of mammalian Cdks. Yeast meiosis is regulated by both Cdc28 (yCdk1) and Ime2 (a meiosis-specific Cdk-like kinase). We show that human Cdk2 is a functional homolog for most of Ime2 functions. It promotes efficient and timely entry into premeiotic DNA replication and the first nuclear division, as well as the regulated transcription of IME1 and the early meiosis-specific genes. We show that this effect is specific, and that neither mice Cdk1, nor mice Cdk4 can suppress ime2. We show that Cdk1 is a functional homolog of Cdc28 that also suppresses one of its meiotic functions, namely inhibiting the transcription of IME1. Cdk2, on the other hand, show dominant negative effects on entry into the cell cycle, most probably by inhibiting the function of Cdc28. Finally, we show that in the meiotic pathway Cdk4 functions as a transcriptional activator.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Meiosis/fisiología , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Animales , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Replicación del ADN , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Nitrógeno/metabolismo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
7.
Dev Biol ; 276(1): 111-23, 2004 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-15531368

RESUMEN

Our understanding of the molecular mechanisms that operate during differentiation of mitotically dividing spermatogonia cells into spermatocytes lags way behind what is known about other differentiating systems. Given the evolutionary conservation of the meiotic process, we screened for mouse proteins that could specifically activate early meiotic promoters in Saccharomyces cerevisiae yeast cells, when fused to the Gal4 activation domain (Gal4AD). Our screen yielded the Aym1 gene that encodes a short peptide of 45 amino acids. We show that a Gal4AD-AYM1 fusion protein activates expression of reporter genes through the promoters of the early meiosis-specific genes IME2 and HOP1, and that this activation is dependent on the DNA-binding protein Ume6. Aym1 is transcribed predominantly in mouse primary spermatocytes and in gonads of female embryos undergoing the corresponding meiotic divisions. Aym1 immunolocalized to nuclei of primary spermatocytes and oocytes and to specific type A spermatogonia cells, suggesting it might play a role in the processes leading to meiotic competence. The potential functional relationship between AYM1 and yeast proteins that regulate expression of early meiotic genes is discussed.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genes Fúngicos , Meiosis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Genes Reporteros , Gónadas/metabolismo , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plásmidos , Embarazo , Regiones Promotoras Genéticas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Espermatocitos/metabolismo , Espermatogonias/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA