Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 136(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37737012

RESUMEN

All endocytosis and exocytosis in the African trypanosome Trypanosoma brucei occurs at a single subdomain of the plasma membrane. This subdomain, the flagellar pocket, is a small vase-shaped invagination containing the root of the single flagellum of the cell. Several cytoskeleton-associated multiprotein complexes are coiled around the neck of the flagellar pocket on its cytoplasmic face. One of these, the hook complex, was proposed to affect macromolecule entry into the flagellar pocket lumen. In previous work, knockdown of T. brucei (Tb)MORN1, a hook complex component, resulted in larger cargo being unable to enter the flagellar pocket. In this study, the hook complex component TbSmee1 was characterised in bloodstream form T. brucei and found to be essential for cell viability. TbSmee1 knockdown resulted in flagellar pocket enlargement and impaired access to the flagellar pocket membrane by surface-bound cargo, similar to depletion of TbMORN1. Unexpectedly, inhibition of endocytosis by knockdown of clathrin phenocopied TbSmee1 knockdown, suggesting that endocytic activity itself is a prerequisite for the entry of surface-bound cargo into the flagellar pocket.


Asunto(s)
Trypanosoma brucei brucei , Trypanosoma , Trypanosoma/metabolismo , Endocitosis/fisiología , Trypanosoma brucei brucei/metabolismo , Membrana Celular/metabolismo , Cilios/metabolismo , Flagelos/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
2.
PLoS Biol ; 19(4): e3001148, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33844684

RESUMEN

Sarcomeres, the basic contractile units of striated muscle cells, contain arrays of thin (actin) and thick (myosin) filaments that slide past each other during contraction. The Ig-like domain-containing protein myotilin provides structural integrity to Z-discs-the boundaries between adjacent sarcomeres. Myotilin binds to Z-disc components, including F-actin and α-actinin-2, but the molecular mechanism of binding and implications of these interactions on Z-disc integrity are still elusive. To illuminate them, we used a combination of small-angle X-ray scattering, cross-linking mass spectrometry, and biochemical and molecular biophysics approaches. We discovered that myotilin displays conformational ensembles in solution. We generated a structural model of the F-actin:myotilin complex that revealed how myotilin interacts with and stabilizes F-actin via its Ig-like domains and flanking regions. Mutant myotilin designed with impaired F-actin binding showed increased dynamics in cells. Structural analyses and competition assays uncovered that myotilin displaces tropomyosin from F-actin. Our findings suggest a novel role of myotilin as a co-organizer of Z-disc assembly and advance our mechanistic understanding of myotilin's structural role in Z-discs.


Asunto(s)
Actinas/metabolismo , Multimerización de Proteína , Sarcómeros/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/genética , Animales , Células Cultivadas , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Humanos , Ratones , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Contracción Muscular/genética , Músculo Esquelético/metabolismo , Unión Proteica/genética , Dominios y Motivos de Interacción de Proteínas/genética , Multimerización de Proteína/genética , Sarcómeros/genética , Tropomiosina/química , Tropomiosina/genética , Tropomiosina/metabolismo
3.
Redox Biol ; 75: 103264, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38972295

RESUMEN

MIF is a ubiquitous protein involved in proinflammatory processes, which undergoes an oxidation-driven conformational change to oxidized (ox)MIF. We demonstrate that hypochlorous acid, produced by neutrophil-released myeloperoxidase (MPO) under inflammatory conditions, effectively oxidizes MIF into the oxMIF isoform, which is specifically recognized by the anti-oxMIF therapeutic antibody, ON104. NMR investigation of MIF oxidized by the MPO system revealed increased flexibility throughout the MIF structure, including at several catalytic and allosteric sites. Mass spectrometry of MPO-oxMIF revealed methionines as the primary site of oxidation, whereas Pro2 and Tyr99/100 remained almost unmodified. ELISA, SPR and cell-based assays demonstrated that structural changes caused by MPO-driven oxidation promoted binding of oxMIF to its receptor, CD74, which does not occur with native MIF. These data reveal the environment and modifications that facilitate interactions between MIF and its pro-inflammatory receptor, and a route for therapeutic intervention targeting the oxMIF isoform.

4.
PLoS One ; 15(12): e0242677, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33296386

RESUMEN

MORN (Membrane Occupation and Recognition Nexus) repeat proteins have a wide taxonomic distribution, being found in both prokaryotes and eukaryotes. Despite this ubiquity, they remain poorly characterised at both a structural and a functional level compared to other common repeats. In functional terms, they are often assumed to be lipid-binding modules that mediate membrane targeting. We addressed this putative activity by focusing on a protein composed solely of MORN repeats-Trypanosoma brucei MORN1. Surprisingly, no evidence for binding to membranes or lipid vesicles by TbMORN1 could be obtained either in vivo or in vitro. Conversely, TbMORN1 did interact with individual phospholipids. High- and low-resolution structures of the MORN1 protein from Trypanosoma brucei and homologous proteins from the parasites Toxoplasma gondii and Plasmodium falciparum were obtained using a combination of macromolecular crystallography, small-angle X-ray scattering, and electron microscopy. This enabled a first structure-based definition of the MORN repeat itself. Furthermore, all three structures dimerised via their C-termini in an antiparallel configuration. The dimers could form extended or V-shaped quaternary structures depending on the presence of specific interface residues. This work provides a new perspective on MORN repeats, showing that they are protein-protein interaction modules capable of mediating both dimerisation and oligomerisation.


Asunto(s)
Lípidos/química , Proteínas Protozoarias/química , Secuencias Repetitivas de Aminoácido , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Cristalografía por Rayos X , Citosol/metabolismo , Liposomas , Fenotipo , Fosfolípidos/metabolismo , Unión Proteica , Multimerización de Proteína , Proteínas Protozoarias/ultraestructura , Proteínas Recombinantes/metabolismo , Trypanosoma brucei brucei/metabolismo
5.
RSC Adv ; 9(71): 41453-41461, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-35541576

RESUMEN

Measuring and quantifying thermodynamic parameters that determine both the stability of and interactions between biological macromolecules are an essential and necessary complement to structural studies. Although basic thermodynamic parameters for an observed process can be readily obtained, the data interpretation is often slow and analysis quality can be extremely variable. We have started to develop a web application that will help users to perform thermodynamic characterizations of oligonucleotide unfolding. The application can perform global fitting of calorimetric and spectroscopic data, and uses a three-state equilibrium model to obtain thermodynamic parameters for each transition step - namely, the Gibbs energy, the enthalpy, and the heat capacity. In addition, the application can define the number of K+ ions and the number of water molecules being released or taken up during unfolding. To test our application, we used UV spectroscopy, circular dichroism, and differential scanning calorimetry to monitor folding and unfolding of a model 22-nucleotide-long sequence of a human 3'-telomeric overhang, known as Tel22. The obtained data were uploaded to the web application and the global fit revealed that unfolding of Tel22 involves at least one intermediate state, and that K+ ions are released during the unfolding, whereas water molecules are taken up.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA