Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 39(2): 49, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36542187

RESUMEN

Microbial exopolysaccharides (EPSs) are mostly produced by bacteria and fungi and have potential use in the production of biomedical products such as nutraceuticals and in tissue engineering applications. The present study investigated the in vitro biological activities and in vivo wound healing effects of EPSs produced from a Sclerotium-forming fungus (Sclerotium glucanicum DSM 2159) and a yeast (Rhodosporidium babjevae), denoted as scleroglucan (Scl) and EPS-R, respectively. EPS yields of 0.9 ± 0.07 g/L and 1.11 ± 0.4 g/L were obtained from S. glucanicum and R. babjevae, respectively. The physicochemical properties of the EPSs were characterized using infrared spectroscopy and scanning electron microscopy. Further investigations of the biological properties showed that both EPSs were cytocompatible toward the human fibroblast cell line and demonstrated  hemocompatibility. Favorable wound healing capacities of the EPSs (10 mg/mL) were also established via in vivo tests. The present study therefore showed that the EPSs produced by S. glucanicum and R. babjevae have the potential use as biocompatible components for the promotion of dermal wound healing.


Asunto(s)
Ascomicetos , Cicatrización de Heridas , Humanos , Bacterias/metabolismo , Ascomicetos/metabolismo , Suplementos Dietéticos , Línea Celular , Polisacáridos Bacterianos/farmacología , Polisacáridos Bacterianos/metabolismo
2.
J Biomol Struct Dyn ; 41(21): 12120-12127, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36645133

RESUMEN

Tissue engineering as an innovative approach aims to combine engineering, biomaterials and biomedicine to eliminate the drawbacks of conventional bone defect treatment. In the current study, we fabricated bioengineered electroactive and bioactive mineralized carbon nanofibers as the scaffold for bone tissue engineering applications. The scaffold was fabricated using the sol-gel method and thoroughly characterized by SEM imaging, EDX analysis and a 4-point probe. The results showed that the CNFs have a diameter of 200 ± 19 nm and electrical conductivity of 1.02 ± 0.12 S cm-1. The in vitro studies revealed that the synthesized CNFs were osteoactive and supported the mineral crystal deposition. The hemolysis study confirmed the hemocompatibility of the CNFs and cell viability/proliferation sassy using an MTT assay kit showed the proliferative activities of mineralized CNFs. In conclusion, this study revealed that the mineralized CNFs synthesized by the combination of sol-gel and electrospinning techniques were electroactive, osteoactive and biocompatible, which can be considered an effective bone tissue engineering scaffold.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Nanofibras , Nanofibras/química , Carbono/química , Andamios del Tejido/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Ingeniería de Tejidos/métodos
3.
BMC Complement Med Ther ; 21(1): 111, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33827547

RESUMEN

BACKGROUND: Interactive dressings are innovatively designed to interact with the wound surface and alter the wound environment to promote wound healing. In the current study, we integrated the physicochemical properties of Poly (caprolactone)/ Poly (vinyl alcohol)/Collagen (PCL/PVA/Col) nanofibers with the biological activities of Momordica charantia pulp extract to develop an efficient wound dressing. The electrospinning method was applied to fabricate the nanofibers, and the prepared wound dressings were thoroughly characterized. RESULTS: SEM imaging showed that the nanofibers were uniform, straight, without any beds with a diameter in the range of 260 to 480 nm. Increasing the concentration of the extract increased the diameter of the nanofibers and also the wettability characteristics while reduced the ultimate tensile strength from 4.37 ± 0.90 MPa for PCL/PVA/Col to 1.62 ± 0.50 MPa for PCL/PVA/Col/Ex 10% (p < 0.05). The in vivo studies showed that the application of the wound dressings significantly enhanced the healing process and the highest wound closure, 94.01 ± 8.12%, was obtained by PCL/PVA/Col/Ex 10% nanofibers (p < 0.05). CONCLUSION: The incorporation of the extract had no significant effects on nanofibers' porosity, water vapor permeability, and swelling characteristics. The in vitro evaluations showed that the fabricated nanofibers were hemocompatible, cytocompatible, and prevent bacterial penetration through the dressing. These findings implied that the PCL/PVA/Col/Ex nanofibers can be applied as the wound dressing materials.


Asunto(s)
Vendajes , Momordica charantia , Nanofibras/química , Extractos Vegetales/uso terapéutico , Animales , Técnicas de Cultivo de Célula , Masculino , Alcohol Polivinílico/química , Ratas , Cicatrización de Heridas/efectos de los fármacos
4.
Mutat Res Rev Mutat Res ; 783: 108296, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32192648

RESUMEN

Carbon-based nanomaterials (CNMs) have attracted a great deal of attention because of their outstanding combinations of physicochemical properties. The unique physicochemical properties of CNMs have made them promising nanomaterials (NMs) for a large number of applications. However, these size-dependent properties serve as a double-edged sword, which makes them fascinating materials with specific features. In particular, some health hazards have been associated with exposure to NMs. Among these hazards, genotoxicity has been the subject of intense research due to its role in inducing cancer-causing inheritable mutations. High reactivity, agglomeration tendency, and a high surface-to-volume ratio of CNMs make their interactions with biological moieties unknown, complicated, and multifactorial-dependent. In this regard, the genotoxicity of each part of the CNMs family must be evaluated and considered together with other parameters. Because of the increasing application of CNMs in everyday goods and products, as well as the growth in the potential exposure of humans to CNMs, there is a critical need to assess the genotoxic potential of each part of the CNMs family. Therefore, the main objective of this review is to provide an overview of the potential genotoxicity of CNMs and explore risk assessment strategies to quickly screen and assess emerging CNMs. It is critical to pay equal attention to both nongenotoxic and genotoxic CNMs, because some CNMs identified as nongenotoxic NMs may promote or aid the progression of the tumors.


Asunto(s)
Carbono , Daño del ADN , Nanoestructuras/toxicidad , Estrés Oxidativo , Animales , Humanos , Nanoestructuras/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA