Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int Endod J ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943551

RESUMEN

AIM: The osteogenic potential of new premixed calcium-silicate-containing bioceramic sealers (Ca-Si sealers) was tested with porcine vascular wall-mesenchymal stem cells (pVW-MSCs). METHODOLOGY: Two Ca-Si-containing sealers: Ceraseal (MetaBiomed, Cheong-si, South Korea) and AH Plus Bioceramic (Maruchi, Wonju-si, South Korea), and an epoxy resin sealer (AH Plus; Dentsply, Konstanz, Germany) as a control, were prepared according to the manufacturers' indications. All samples were allowed to set for 100% of their setting time in a sterile humid cabinet at 37°C and 95% relative humidity. pVW-MSC seeding efficiency and osteogenic differentiation were analysed as marker of gene/protein expression for up to 12 days. Mineralization assay and immunofluorescence staining were performed and evaluated over a period of 21 days. Statistical analyses were conducted using one-way analysis of variance (p < .05). Additional samples were prepared and stored under the same conditions and inspected using an environmental scanning electron microscope equipped with an energy dispersive X-ray spectroscopy system. RESULTS: Significantly higher cell seeding efficiency (p < .05) was observed for both Ca-Si sealers from day 8. pVW-MSCs showed a significant shift towards the osteogenic lineage only when seeded in contact with Ca-Si sealers. Gene expression of osteopontin was upregulated significantly. Collagen I and osteocalcin were clearly expressed by cells in contact with Ca-Si sealers. Mineralization granules were observed in Alizarin red assays and confocal laser scanning microscopy analysis of both Ca-Si sealers. No gene expression or granule mineralization were observed on the epoxy resin sealer. CONCLUSIONS: Premixed Ca-Si sealers displayed a higher potential for osteogenic activity on pVW-MSCs. Epoxy resin sealer was unable to induce any osteogenic activity. The properties of both Ca-Si sealers suggest their potential as osteoinductive platforms for vascular MSCs in periapical bone.

2.
Histochem Cell Biol ; 156(1): 59-67, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33725198

RESUMEN

The foetal bovine serum (FBS) concentration could influence functional parameters of IPEC-J2 cells. IPEC-J2 is a non-transformed continuous epithelial cell line that represents an established in vitro model to study porcine gut inflammation and alterations of intestinal integrity. This cell line also represents a good translational model thanks to the high similitudes between pig and human gastrointestinal tract. With the aim to assess if the FBS-dependent functional variations are linked to the bioenergetic aspects, the addition of 5% and 10% FBS in the IPEC-J2 culture medium were tested. Doubling time and TEER measurement indicated that cells cultured at higher FBS dose grow faster and as a more compact monolayer. 10% FBS increases ATP production and mitochondrial oxidative phosphorylation (OxPhos) and does not affect glycolysis. Both at 5% and 10% FBS ATP production mainly comes from OxPhos and FBS concentration does not affect the cell respiration bioenergetic parameters. Noteworthy, IPEC-J2 treated with 5% and 10% FBS have a metabolic potential since both OxPhos and glycolysis increase by > 100% and < 50%, respectively in comparison with baseline metabolism. Moreover, glucose, fatty acids and glutamine constitute the preferred metabolic fuel for mitochondrial respiration at both FBS conditions tested. Accordingly, the cells flexibility to oxidize these substrates shows that IPEC-J2 mitochondria cannot maintain the basal ATP production without oxidizing all the substrates available irrespective of FBS concentration. To sum up, in IPEC-J2 cells OxPhos increases with the FBS-stimulated functional physiological parameters to fulfil ATP requirements.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Sangre Fetal/metabolismo , Adenosina Trifosfato/sangre , Animales , Bovinos , Células Cultivadas , Porcinos
3.
BMC Vet Res ; 17(1): 30, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33461558

RESUMEN

BACKGROUND: Doxorubicin (DOX) is widely used in both human and veterinary oncology although the onset of multidrug resistance (MDR) in neoplastic cells often leads to chemotherapy failure. Better understanding of the cellular mechanisms that circumvent chemotherapy efficacy is paramount. The aim of this study was to investigate the response of two canine mammary tumour cell lines, CIPp from a primary tumour and CIPm, from its lymph node metastasis, to exposure to EC50(20h) DOX at 12, 24 and 48 h of treatment. We assessed the uptake and subcellular distribution of DOX, the expression and function of P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP), two important MDR mediators. To better understand this phenomenon the effects of DOX on the cell cycle and Ki67 cell proliferation index and the expression of p53 and telomerase reverse transcriptase (TERT) were also evaluated by immunocytochemistry (ICC). RESULTS: Both cell lines were able to uptake DOX within the nucleus at 3 h treatment while at 48 h DOX was absent from the intracellular compartment (assessed by fluorescence microscope) in all the surviving cells. CIPm, originated from the metastatic tumour, were more efficient in extruding P-gp substrates. By ICC and qRT-PCR an overall increase in both P-gp and BCRP were observed at 48 h of EC50(20h) DOX treatment in both cell lines and were associated with a striking increase in the percentage of p53 and TERT expressing cells by ICC. The cell proliferation fraction was decreased at 48 h in both cell lines and cell cycle analysis showed a DOX-induced arrest in the S phase for CIPp, while CIPm had an increase in cellular death without arrest. Both cells lines were therefore composed by a fraction of cells sensible to DOX that underwent apoptosis/necrosis. CONCLUSIONS: DOX administration results in interlinked modifications in the cellular population including a substantial effect on the cell cycle, in particular arrest in the S phase for CIPp and the selection of a subpopulation of neoplastic cells bearing MDR phenotype characterized by P-gp and BCRP expression, TERT activation, p53 accumulation and decrease in the proliferating fraction. Important information is given for understanding the dynamic and mechanisms of the onset of drug resistance in a neoplastic cell population.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Perros , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Mamarias Animales , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
4.
Int J Mol Sci ; 21(15)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722269

RESUMEN

Hydrogen sulfide (H2S) is now considered not only for its toxicity, but also as an endogenously produced gas transmitter with multiple physiological roles, also in maintaining and regulating stem cell physiology. In the present work, we evaluated the effect of a common H2S donor, NaHS, on porcine vascular wall-mesenchymal stem cells (pVW-MSCs). pVW-MSCs were treated for 24 h with increasing doses of NaHS, and the cell viability, cell cycle, and reactive oxygen species (ROS) production were evaluated. Moreover, the long-term effects of NaHS administration on the noteworthy characteristics of pVW-MSCs were analyzed. The MTT test revealed no alteration in cell viability, however, the cell cycle analysis demonstrated that the highest NaHS dose tested (300 µM) determined a block in S phase, which did not depend on the ROS production. Moreover, NaHS (10 µM), continuously administered in culture for 21 days, was able to significantly reduce NG2, Nestin and PDGFR-ß expression. The pro-angiogenic attitude of pVW-MSCs was partially reduced by NaHS: the cells maintained the ability to grow in spheroid and sprouting from that, but endothelial markers (Factor VIII and CD31) were reduced. In conclusion, NaHS can be toxic for pVW-MSCs in high doses, while in low doses, it influences cellular physiology, by affecting the gene expression with a slowing down of the endothelial lineage.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Vasos Sanguíneos/metabolismo , Células Endoteliales/metabolismo , Células Madre Mesenquimatosas/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Sulfuros/farmacología , Animales , Vasos Sanguíneos/citología , Células Endoteliales/citología , Células Madre Mesenquimatosas/citología , Especies Reactivas de Oxígeno/metabolismo , Porcinos
5.
J Cell Physiol ; 234(10): 16685-16691, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30825197

RESUMEN

The link between metabolic remodeling and stem cell fate is still unclear. To explore this topic, the metabolic profile of porcine vascular wall mesenchymal stem cells (pVW-MSCs) was investigated. At the first and second cell passages, pVW-MSCs exploit both glycolysis and cellular respiration to synthesize adenosine triphosphate (ATP), but in the subsequent (third to eighth) passages they do not show any mitochondrial ATP turnover. Interestingly, when the first passage pVW-MSCs are exposed to 0.1 or 10 µg/ml lipopolysaccharides (LPSs) for 4 hr, even if ATP synthesis is prevented, the spare respiratory capacity is retained and the glycolytic capacity is unaffected. In contrast, the exposure of pVW-MSCs at the fifth passage to 10 µg/ml LPS stimulates mitochondrial ATP synthesis. Flow cytometry rules out any reactive oxygen species (ROS) involvement in the LPS effects, thus suggesting that the pVW-MSC metabolic pattern is modulated by culture conditions via ROS-independent mechanisms.


Asunto(s)
Lipopolisacáridos/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Animales , Aorta/citología , Células Cultivadas , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno , Porcinos
6.
BMC Vet Res ; 15(1): 123, 2019 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-31029157

RESUMEN

BACKGROUND: MSCs secretome is under investigation as an alternative to whole-cell-based therapies, since it is enriched of bioactive molecules: growth factors, cytokines and chemokines. Taking into account the translational value of the pig model, the leading aim of the present paper was to characterize the secretome of porcine Vascular Wall-Mesenchymal Stem Cells (pVW-MSCs) and its change in presence of LPS stimulation. Moreover, considering the importance of angiogenesis in regenerative mechanisms, we analysed the effect of pVW-MSCs secretome on in vitro angiogenesis. RESULTS: Our results demonstrated that conditioned medium from unstimulated pVW-MSCs contained high levels of IL-8, GM-CSF, IFN-γ and other immunomodulatory proteins: IL-6 IL-18 IL-4 IL-2 IL-10. LPS modulates pVW-MSCs gene expression and secretome composition, in particular a significant increase of IL-6 and IL-8 was observed; conversely, the amount of GM-CSF, IFN-γ, IL-2, IL-4, IL-10 and IL-18 showed a significant transient decrease with the LPS stimulation. Conditioned medium from unstimulated pVW-MSCs induced in vitro endothelial angiogenesis, which is more evident when the conditioned medium was from LPS stimulated pVW-MSCs. CONCLUSIONS: The lines of evidence here presented shed a light on possible future application of secretome derived by pVW-MSCs on research studies in translational regenerative medicine.


Asunto(s)
Endotelio Vascular/efectos de los fármacos , Lipopolisacáridos/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Animales , Células Cultivadas , Endotelio Vascular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Porcinos , Transcriptoma
7.
J Neurooncol ; 121(1): 119-27, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25261924

RESUMEN

Medulloblastomas (MBs) associated with the Wnt activation represent a subgroup with a favorable prognosis, but it remains unclear whether Wnt activation confers a less aggressive phenotype and/or enhances radiosensitivity. To investigate this issue, we evaluated the biological behavior of an MB cell line, UW228-1, stably transfected with human ß-catenin cDNA encoding a nondegradable form of ß-catenin (UW-B) in standard culture conditions and after radiation treatment. We evaluated the expression, transcriptional activity, and localization of ß-catenin in the stably transfected cells using immunofluorescence and WB. We performed morphological analysis using light and electron microscopy. We then analyzed changes in the invasiveness, growth, and mortality in standard culture conditions and after radiation. We demonstrated that (A) Wnt activation inhibited 97 % of the invasion capability of the cells, (B) the growth of the UW-B cells was statistically significantly lower than that of all the other control cells (p < 0.01), (C) the mortality of irradiated UW-B cells was statistically significantly higher than that of the controls and their nonirradiated counterparts (p < 0.05), and (D) morphological features of neuronal differentiation were observed in the Wnt-activated cells. In tissue samples, the Ki-67 labeling index (LI) was lower in ß-catenin-positive samples compared to non-ß-catenin positive ones. The Ki-67 LI median (LI = 40) of the nuclear ß-catenin-positive tumor samples was lower than that of non-nuclear ß-catenin-positive samples (LI = 50), but the difference was not statistically significant. Overall, our data suggest that activation of the Wnt pathway reduces the proliferation and invasion of MBs and increases the tumor's radiosensitivity.


Asunto(s)
Proliferación Celular/fisiología , Meduloblastoma/fisiopatología , Meduloblastoma/radioterapia , Tolerancia a Radiación/fisiología , Proteínas Wnt/metabolismo , Adolescente , Western Blotting , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Niño , Preescolar , Técnica del Anticuerpo Fluorescente , Humanos , Lactante , Recién Nacido , Antígeno Ki-67/metabolismo , Meduloblastoma/patología , Microscopía Electrónica de Transmisión , Invasividad Neoplásica/fisiopatología , Neurogénesis/fisiología , Transfección , beta Catenina/genética , beta Catenina/metabolismo
8.
Ultrastruct Pathol ; 38(5): 295-302, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25079897

RESUMEN

OBJECTIVES: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease involving progressive muscular paralysis reflecting degeneration of motor neurons. Skeletal muscle tissue seems to play a significant role in ALS pathogenesis. Here, the role of satellite cells (SCs) in ALS muscle atrophy is investigated. METHODS: We isolated SCs from ALS human muscle biopsies and we analyzed their ability to grow and expand in vitro. Ultrastructural and immunophenotypical features were analyzed. Quantitative real-time RT-QPCR and western blot (WB) analyses were performed to evaluate MRFs and MyH1 expression. RESULTS: ALS SCs showed a high proliferative potential, but their capacity to proceed through the myogenic program and form myotubes seems altered compared to controls (Ctrls). We observed that differentiating ALS SCs showed some specific features, but they displayed an altered morphology, with a large number of vacuoles. RT-QPCR and WB showed lower Myf-4 and MyH1 compared to Ctrls. CONCLUSIONS: Our data suggest that the capacity of ALS SCs to proceed through the myogenic program seems to be altered: SCs seem to lose their ability to regenerate and restore mature myofibers.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/patología , Células Satélite del Músculo Esquelético/citología , Anciano , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad
9.
Res Vet Sci ; 172: 105244, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554548

RESUMEN

The value of pig as "large animal model" is a well-known tool for translational medicine, but it can also be beneficial in studying animal health in a one-health vision. The ConcePTION Project aims to provide new information about the risks associated with medication use during breastfeeding, as this information is not available for most commonly used drugs. In the IMI-Conception context, Göttingen Minipigs have been preferred to hybrid pigs for their genetic stability and microbiological control. For the first time, in the present research, three primary cell cultures of mammary epithelial cells were isolated and characterized from Göttingen Minipigs (mpMECs), including their ability to create the epithelial barrier. In addition, a comparative analysis between Göttingen Minipigs and commercial hybrid pig mammary epithelial cells (pMECs) was conducted. Epithelial markers: CKs, CK18, E-CAD, ZO-1 and OCL, were expressed in both mpMECs and pMECs. RT2 Profiler PCR Array Pig Drug Transporters showed a similar profile in mRNA drug transporters. No difference in energy production under basal metabolic condition was evidenced, while under stressed state, a different metabolic behaviour was shown between mpMECs vs pMECs. TEER measurement and sodium fluorescein transport, indicated that mpMECs were able to create an epithelial barrier, although, this turned out to be less compact than pMECs. By comparing mpMECs with mammary epithelial cells isolated from Hybrid pigs (pMECs), although both cell lines have morphological and phenotypic characteristics that make them both useful in barrier studies, some specific differences exist and must be considered in a translational perspective.


Asunto(s)
Células Epiteliales , Glándulas Mamarias Animales , Porcinos Enanos , Animales , Porcinos , Femenino , Glándulas Mamarias Animales/citología , Células Cultivadas
10.
Neuropathology ; 33(3): 276-80, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23279333

RESUMEN

A large Italo-Spanish kindred with autosomal-dominant inheritance has been reported with proximal limb and axial muscle weakness. Clinical, histological and genetic features have been described. A limb girdle muscular dystrophy 1F (LGMD1F) disease locus at chromosome 7q32.1-32.2 has been previously identified. We report a muscle pathological study of two patients (mother and daughter) from this family. Muscle morphologic findings showed increased fiber size variability, fiber atrophy, and acid-phosphatase-positive vacuoles. Immunofluorescence against desmin, myotilin, p62 and LC3 showed accumulation of myofibrils, ubiquitin binding protein aggregates and autophagosomes. The ultrastructural study confirmed autophagosomal vacuoles. Many alterations of myofibrillar component were detected, such as prominent disarray, rod-like structures with granular aspect, and occasionally, cytoplasmic bodies. Our ultrastructural data and muscle pathological features are peculiar to LGMD1F and support the hypothesis that the genetic defect leads to a myopathy phenotype associated with disarrangement of the cytoskeletal network.


Asunto(s)
Músculo Esquelético/patología , Distrofia Muscular de Cinturas/patología , Edad de Inicio , Niño , Citoesqueleto/patología , Citoesqueleto/ultraestructura , Progresión de la Enfermedad , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Microscopía Electrónica de Transmisión , Músculo Esquelético/ultraestructura , Miofibrillas/patología , Fenotipo
11.
Animals (Basel) ; 13(16)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37627392

RESUMEN

Two main classes of perivascular multipotent populations have been described: the microvascular pericytes and the vascular wall mesenchymal stem cells (VW-MSCs). VW-MSCs are isolated from large vessels in many species and they participate in vascular remodeling together with other cellular components such as endothelial cells. Considering that the Göttingen Minipigs are widely used in Europe as a translational model in the field of cardiovascular diseases, the aim of the present research was to isolate VW-MSCs from the adult aorta of Göttingen Minipigs while preserving and also collecting endothelial cells. The results obtained in the present research demonstrated that this new protocol allows us to obtain a pure population of VW-MSCs and endothelial cells. VW-MSCs from Göttingen Minipigs responded fully to the MSC minima international criteria, being positive to CD105, CD90, and CD44 and negative to CD45 and CD34. Moreover, VW-MSCs presented a differentiative potential towards osteogenic, chondrogenic, and adipogenic lineages. Overall, the present protocol, preserving the viability and phenotypic features of the two isolated populations, opens future possibilities of using minipig VW-MSCs and endothelial cells in in vitro vascular remodeling studies.

12.
Animals (Basel) ; 12(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35327146

RESUMEN

Stem-cell therapy provides a promising strategy for patients with ischemic heart disease. In recent years, numerous studies related to this therapeutic approach were performed; however, the results were often heterogeneous and contradictory. For this reason, we conducted a systematic review and meta-analysis of trials, reporting the use of stem-cell treatment against acute or chronic ischemic cardiomyopathies in large animal models with regard to Left Ventricular Ejection Fraction (LVEF). The defined research strategy was applied to the PubMed database to identify relevant studies published from January 2011 to July 2021. A random-effect meta-analysis was performed on LVEF mean data at follow-up between control and stem-cell-treated animals. In order to improve the definition of the effect measure and to analyze the factors that could influence the outcomes, a subgroup comparison was conducted. Sixty-six studies (n = 1183 animals) satisfied our inclusion criteria. Ischemia/reperfusion infarction was performed in 37 studies, and chronic occlusion in 29 studies; moreover, 58 studies were on a pig animal model. The meta-analysis showed that cell therapy increased LVEF by 7.41% (95% Confidence Interval 6.23−8.59%; p < 0.001) at follow-up, with significative heterogeneity and high inconsistency (I2 = 82%, p < 0.001). By subgroup comparison, the follow-up after 31−60 days (p = 0.025), the late cell injection (>7 days, p = 0.005) and the route of cellular delivery by surgical treatment (p < 0.001) were significant predictors of LVEF improvement. This meta-analysis showed that stem-cell therapy may improve heart function in large animal models and that the swine specie is confirmed as a relevant animal model in the cardiovascular field. Due to the significative heterogeneity and high inconsistency, future translational studies should be designed to take into account the evidenced predictors to allow for the reduction of the number of animals used.

13.
Vet Sci ; 9(4)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35448679

RESUMEN

This study was conducted to evaluate the safety and the beneficial effects of dietary supplementation with Boswellia serrata (Bs) and Salix alba (Sa) in Leghorn hens during the critical pre-laying and laying phases. A total of 120 pullets, 17 weeks of age, were assigned to two groups (Control­C; Treated­T, n = 60 each). For 12 weeks, the T group received a diet supplemented with 0.3% of dry extracts of Bs (5%) and Sa (5%). The study lasted 19 weeks. Productive performance, serum analytes, H/L ratio, IgA and anti-IBV antibodies were investigated. Water intake was significantly higher, while body and egg weight was significantly lower for the T group (p < 0.05). No other differences were detected in performance parameters, serum analytes, IgA and H/L ratio excluding t0, with a significantly (p < 0.05) higher H/R ratio and higher titers of anti-IBV antibody for the T group. Overall, the data obtained in this study show that the supplementation with Bs and Sa was safe and resulted in an increase in water consumption, a decrease in egg weight, and a sedative effect in the hens. In the future, it would be interesting to test this supplement in hens reared on intensive farms.

14.
Res Vet Sci ; 152: 476-484, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36156377

RESUMEN

Since ancient times, Artemisia annua (A. annua) has been used as a medicinal plant in Traditional Chinese Medicine. In addition, recent studies have investigated the cytotoxic effects of A. annua extracts towards cancer cells. The leading aim of the present research is to evaluate the cytotoxic effects of an hydroalcoholic extract of A. annua on two canine osteosarcoma (OSA) cell lines, OSCA-8 and OSCA-40, focusing on the possible involvement of ferroptosis. The quantitative determination of artemisinin concentration in the extract, culture medium and OSA cells was carried out through the use of an instrumental analytical method based on liquid chromatography coupled with spectrophotometric detection and tandem mass spectrometry (LC-DAD-MS/MS). OSCA-8 and OSCA-40 were exposed to different dilutions of the extract for the EC50 calculation then the uptake of artemisinin by the cells, the effects on the cell cycle, the intracellular iron level, the cellular morphology and the lipid oxidation state were evaluated. A concentration of artemisinin of 63.8 ± 3.4 µg/mL was detected in the extract. A dose-dependent cytotoxic effect was evidenced. In OSCA-40 alterations of the cell cycle and a significantly higher intracellular iron content were observed. In both cell lines the treatment with the extract was associated with lipid peroxidation and with the appearance of a "ballooning" phenotype suggesting the activation of ferroptosis. In conclusion the A. annua idroalcoholic extract utilized in this study showed anticancer activity on canine OSA cell lines that could be useful in treating drug resistant canine OSAs.


Asunto(s)
Artemisia annua , Artemisininas , Neoplasias Óseas , Enfermedades de los Perros , Osteosarcoma , Animales , Perros , Artemisia annua/química , Artemisininas/farmacología , Artemisininas/uso terapéutico , Neoplasias Óseas/veterinaria , Línea Celular , Hierro , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/veterinaria , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas en Tándem/veterinaria
15.
Animals (Basel) ; 11(7)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34359140

RESUMEN

The ConcePTION project aims at generating further knowledge about the risks related to the use of medication during breastfeeding, as this information is lacking for most commonly used drugs. Taking into consideration multiple aspects, the pig model has been considered by the consortium as the most appropriate choice. The present research was planned to develop an efficient method for the isolation and culture of porcine Mammary Epithelial Cells (pMECs) to study the mammary epithelial barrier in vitro. Mammary gland tissues were collected at a local slaughterhouse, dissociated and the selected cellular population was cultured, expanded and characterized by morphology, cell cycle analysis and immunophenotyping. Their ability to create a barrier was tested by TEER measurement and sodium fluorescein transport activity. Expression of 84 genes related to drug transporters was evaluated by a PCR array. Our results show that primary cells express epithelial cell markers: CKs, CK18, E-Cad and tight junctions molecules ZO-1 and OCL. All the three pMEC cellular lines were able to create a tight barrier, although with different strengths and kinetics, and express the main ABC and SLC drug transporters. In conclusion, in the present paper we have reported an efficient method to obtain primary pMEC lines to study epithelial barrier function in the pig model.

16.
Poult Sci ; 99(9): 4351-4359, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32867979

RESUMEN

The vaccines currently available to control infectious bursal disease (IBD) include live-attenuated and inactivated vaccines, immune-complex vaccines, and vaccines consisting of viral constructs of herpesvirus of turkeys genetically engineered to express VP2 surface protein. To evaluate the impact of vaccines on the chicken immune system, 2 animal trials were performed in specific pathogen-free broiler chickens. In trial 1, birds were either vaccinated when they are one-day old with a dual recombinant herpes virus of turkey construct vaccine, expressing VP2 protein of (IBDV) and F protein of Newcastle disease virus, or an immune-complex IBDV vaccine or birds were not vaccinated. At 14, 28, and 35 D, the bursa of Fabricius was collected for bursa:body weight (B:BW) ratio calculation. In trial 2, birds were vaccinated when they were 1-day old according to the same protocol as trial 1, but at day 14, all groups also received a live infectious bronchitis (IB) vaccine. At 0, 7, 14, 21, and 28 days after IB vaccination, birds were tested by ELISA for IB serology and, soon after the last blood sampling, they were euthanized for collection of Harderian glands, trachea, and spleen and testing by flow cytometry for characterization of mononuclear cells. The immune-complex vaccine groups showed significantly lower B:BW ratio, lower IBV antibody titers, and higher mean percentage of CD8+ T cells in the spleen, trachea, and Harderian glands than those in the other experimental groups. The results of the in vivo trials coupled with a depth analysis of the repertoire of parameters involved in the immune response to IBD and IB vaccinations show one vaccine may influence the immune response of other vaccines included in the vaccination program.


Asunto(s)
Infecciones por Birnaviridae/veterinaria , Enfermedades de las Aves de Corral/inmunología , Vacunas Virales/inmunología , Animales , Infecciones por Birnaviridae/inmunología , Bolsa de Fabricio/patología , Pollos , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/veterinaria , Virus de la Bronquitis Infecciosa/inmunología , Virus de la Enfermedad Infecciosa de la Bolsa/inmunología , Virus de la Enfermedad de Newcastle/inmunología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/virología , Organismos Libres de Patógenos Específicos , Vacunación/veterinaria , Vacunas Atenuadas/inmunología
17.
Oxid Med Cell Longev ; 2020: 2984613, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32908631

RESUMEN

Clinopodium tomentosum (Kunth) Govaerts is an endemic species in Ecuador, where it is used as an anti-inflammatory plant to treat respiratory and digestive affections. In this work, effects of a Clinopodium tomentosum ethanolic extract (CTEE), prepared from aerial parts of the plant, were investigated on vascular endothelium functions. In particularly, angiogenesis activity was evaluated, using primary cultures of porcine aortic endothelial cells (pAECs). Cells were cultured for 24 h in the presence of CTEE different concentrations (10, 25, 50, and 100 µg/ml); no viability alterations were found in the 10-50 µg/ml range, while a slight, but significant, proliferative effect was observed at the highest dose. In addition, treatment with CTEE was able to rescue LPS-induced injury in terms of cell viability. The CTEE ability to affect angiogenesis was evaluated by scratch test analysis and by an in vitro capillary-like network assay. Treatment with 25-50 µg/ml of extract caused a significant increase in pAEC's migration and tube formation capabilities compared to untreated cells, as results from the increased master junctions' number. On the other hand, CTEE at 100 µg/ml did not induce the same effects. Quantitative PCR data demonstrated that FLK-1 mRNA expression significantly increased at a CTEE dose of 25 µg/ml. The CTEE phytochemical composition was assessed through HPLC-DAD; rosmarinic acid among phenolic acids and hesperidin among flavonoids were found as major phenolic components. Total phenolic content and total flavonoid content assays showed that flavonoids are the most abundant class of polyphenols. The CTEE antioxidant activity was also showed by means of the DPPH and ORAC assays. Results indicate that CTEE possesses an angiogenic capacity in a dose-dependent manner; this represents an initial step in elucidating the mechanism of the therapeutic use of the plant.


Asunto(s)
Aorta/citología , Células Endoteliales/citología , Lamiaceae/química , Neovascularización Fisiológica/efectos de los fármacos , Extractos Vegetales/farmacología , Hojas de la Planta/química , Animales , Antioxidantes/farmacología , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Lipopolisacáridos/farmacología , Fitoquímicos/análisis , Porcinos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
18.
Vet World ; 13(12): 2728-2735, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33487991

RESUMEN

AIM: The aim of the study was to set up a porcine ex vivo model of acid-induced damage and to evaluate its performance by means of multichannel intraluminal impedance and pH (MII-pH) live recording, histology, and Evans blue (EB) permeability assay. MATERIALS AND METHODS: Thirteen esophagi, collected at a slaughterhouse, were ablated of their sphincters, pinned upright on a support, and placed in a thermostatic hood at 37°C with two infusion tubes and an MII-pH probe inserted in the top end. Three esophagi (histology controls) were only left in the hood for 3.5 h before sampling, while the remaining organs underwent the experimental protocol including saline infusion and recovery recording, and acid solution infusion and recovery recording. RESULTS: MII-pH analysis highlighted a significantly stronger decrease during acid infusion when compared to saline, but a better post-infusion recovery for saline solution. At the end of the protocol, MII was still statistically lower than baseline. The acid-damaged esophagi significantly absorbed more EB dye, and histology revealed strong mucosal exfoliation. CONCLUSION: The proposed model of esophageal acid damage seems to be repeatable, reliable, and achievable using organs collected at the slaughterhouse. MII recording proved to have good sensitivity in detecting mucosal alterations also in ex vivo trials.

19.
Clin Exp Gastroenterol ; 13: 569-576, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33223844

RESUMEN

PURPOSE: AL2106 is a new medical device based on a mixture of chondroitin sulphate in a xyloglucan and glycerol solution made to maximize its bioadhesive capability to the esophageal mucosa. The aim of the present study was twofold to evaluate the AL2106 protective effect on the esophageal mucosa when exposed to an acidic solution mimicking gastric reflux and to assess the resilience of this effect to saline washing. MATERIALS AND METHODS: A porcine ex vivo model was used and the effects of the new medical device were compared to a sodium alginate suspension (SAS) already present on the market which was assumed as reference. Mucosal damage was induced in 19 porcine esophagi by perfusion with an acidic solution added with pepsin, and Evans blue dye (EBD) tissue uptake was used as an indicator of mucosal permeability. The EBD penetration, expressed as EBD µg/g of dry tissue, was assessed in specimens of untreated damaged mucosa and in specimens treated with AL2106 or SAS. The same evaluation was carried out after washing with normal saline. RESULTS: Both topical agents tested significantly reduced the EBD uptake by more than 60% (AL2106 8.4±4.5, SAS 3.6±2.7 vs control 23.2±13.1, p<0.01). The saline washing did not cause any significant reduction in the protective effect of AL2106 (8.6±5.9), while it significantly reduced that of SAS (5.9±4.3, p<0.05). CONCLUSION: The new AL2106 medical device showed a good barrier effect against a reflux-like damaging solution and preserved this effect after the mucosal washing test, thus suggesting its possible relevance for the treatment of gastroesophageal reflux disease.

20.
Nanomaterials (Basel) ; 10(2)2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-32013247

RESUMEN

Vascularization is a crucial factor when approaching any engineered tissue. Vascular wall-mesenchymal stem cells are an excellent in vitro model to study vascular remodeling due to their strong angiogenic attitude. This study aimed to demonstrate the angiogenic potential of experimental highly porous scaffolds based on polylactic acid (PLA) or poly-e-caprolactone (PCL) doped with calcium silicates (CaSi) and dicalcium phosphate dihydrate (DCPD), namely PLA-10CaSi-10DCPD and PCL-10CaSi-10DCPD, designed for the regeneration of bone defects. Vascular wall-mesenchymal stem cells (VW-MSCs) derived from pig thoracic aorta were seeded on the scaffolds and the expression of angiogenic markers, i.e. CD90 (mesenchymal stem/stromal cell surface marker), pericyte genes α-SMA (alpha smooth muscle actin), PDGFR-ß (platelet-derived growth factor receptor-ß), and NG2 (neuron-glial antigen 2) was evaluated. Pure PLA and pure PCL scaffolds and cell culture plastic were used as controls (3D in vitro model vs. 2D in vitro model). The results clearly demonstrated that the vascular wall mesenchymal cells colonized the scaffolds and were metabolically active. Cells, grown in these 3D systems, showed the typical gene expression profile they have in control 2D culture, although with some main quantitative differences. DNA staining and immunofluorescence assay for alpha-tubulin confirmed a cellular presence on both scaffolds. However, VW-MSCs cultured on PLA-10CaSi-10DCPD showed an individual cells growth, whilst on PCL-10CaSi-10DCPD scaffolds VW-MSCs grew in spherical clusters. In conclusion, vascular wall mesenchymal stem cells demonstrated the ability to colonize PLA and PCL scaffolds doped with CaSi-DCPD for new vessels formation and a potential for tissue regeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA