Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Plant J ; 114(6): 1243-1266, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36919199

RESUMEN

Grasses derive from a family of monocotyledonous plants that includes crops of major economic importance such as wheat, rice, sorghum and barley, sharing a common ancestor some 100 million years ago. The genomic attributes of plant adaptation remain obscure and the consequences of recurrent whole genome duplications (WGD) or polyploidization events, a major force in plant evolution, remain largely speculative. We conducted a comparative analysis of omics data from ten grass species to unveil structural (inversions, fusions, fissions, duplications, substitutions) and regulatory (expression and methylation) basis of genome plasticity, as possible attributes of plant long lasting evolution and adaptation. The present study demonstrates that diverged polyploid lineages sharing a common WGD event often present the same patterns of structural changes and evolutionary dynamics, but these patterns are difficult to generalize across independent WGD events as a result of non-WGD factors such as selection and domestication of crops. Polyploidy is unequivocally linked to the evolutionary success of grasses during the past 100 million years, although it remains difficult to attribute this success to particular genomic consequences of polyploidization, suggesting that polyploids harness the potential of genome duplication, at least partially, in lineage-specific ways. Overall, the present study clearly demonstrates that post-polyploidization reprogramming is more complex than traditionally reported in investigating single species and calls for a critical and comprehensive comparison across independently polyploidized lineages.


Asunto(s)
Genoma de Planta , Poaceae , Poaceae/genética , Genoma de Planta/genética , Filogenia , Evolución Molecular , Grano Comestible/genética , Poliploidía , Duplicación de Gen
2.
BMC Genomics ; 25(1): 66, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233804

RESUMEN

BACKGROUND: The ongoing evolution of the Next Generation Sequencing (NGS) technologies has led to the production of genomic data on a massive scale. While tools for genomic data integration and analysis are becoming increasingly available, the conceptual and analytical complexities still represent a great challenge in many biological contexts. RESULTS: To address this issue, we describe a six-steps tutorial for the best practices in genomic data integration, consisting of (1) designing a data matrix; (2) formulating a specific biological question toward data description, selection and prediction; (3) selecting a tool adapted to the targeted questions; (4) preprocessing of the data; (5) conducting preliminary analysis, and finally (6) executing genomic data integration. CONCLUSION: The tutorial has been tested and demonstrated on publicly available genomic data generated from poplar (Populus L.), a woody plant model. We also developed a new graphical output for the unsupervised multi-block analysis, cimDiablo_v2, available at https://forgemia.inra.fr/umr-gdec/omics-integration-on-poplar , and allowing the selection of master drivers in genomic data variation and interplay.


Asunto(s)
Genoma , Genómica , Plantas
3.
BMC Genomics ; 24(1): 255, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37170217

RESUMEN

BACKGROUND: Bread wheat is a recent allohexaploid (genomic constitution AABBDD) that emerged through a hybridization between tetraploid Triticum turgidum (AABB) and diploid Aegilops tauschii (DD) less than 10,000 years ago. The hexaploidization can be re-created artificially, producing synthetic wheat that has been used to study immediate genomic responses to polyploidization. The scale of the consequences of polyploidization, and their mechanism of establishment, remain uncertain. RESULTS: Here we sampled several synthetic wheats from alternative parental genotypes and reciprocal crosses, and examined transcriptomes from two different tissues and successive generations. We did not detect any massive reprogramming in gene expression, with only around 1% of expressed genes showing significant differences compared to their lower-ploidy parents. Most of this differential expression is located on the D subgenome, without consistency in the direction of the expression change. Homoeolog expression bias in synthetic wheat is similar to the pattern observed in the parents. Both differential expression and homoeolog bias are tissue-specific. While up to three families of transposable elements became upregulated in wheat synthetics, their position and distance are not significantly associated with expression changes in proximal genes. DISCUSSION: While only a few genes change their expression pattern after polyploidization, they can be involved in agronomically important pathways. Alternative parental combinations can lead to opposite changes on the same subset of D-located genes, which is relevant for harnessing new diversity in wheat breeding. Tissue specificity of the polyploidization-triggered expression changes indicates the remodelling of transcriptomes in synthetic wheat is plastic and likely caused by regulome interactions rather than permanent changes. We discuss the pitfalls of transcriptomic comparisons across ploidy levels that can inflate the de-regulation signal. CONCLUSIONS: Transcriptomic response to polyploidization in synthetic AABBDD wheat is modest and much lower than some previous estimates. Homoeolog expression bias in wheat allohexaploids is mostly attributed to parental legacy, with polyploidy having a mild balancing effect.


Asunto(s)
Transcriptoma , Triticum , Triticum/genética , Fitomejoramiento , Perfilación de la Expresión Génica , Ploidias , Poliploidía , Genoma de Planta
4.
BMC Genomics ; 22(1): 227, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33794767

RESUMEN

BACKGROUND: Barley is one of the founder crops of Neolithic agriculture and is among the most-grown cereals today. The only trait that universally differentiates the cultivated and wild subspecies is 'non-brittleness' of the rachis (the stem of the inflorescence), which facilitates harvesting of the crop. Other phenotypic differences appear to result from facultative or regional selective pressures. The population structure resulting from these regional events has been interpreted as evidence for multiple domestications or a mosaic ancestry involving genetic interaction between multiple wild or proto-domesticated lineages. However, each of the three mutations that confer non-brittleness originated in the western Fertile Crescent, arguing against multiregional origins for the crop. RESULTS: We examined exome data for 310 wild, cultivated and hybrid/feral barley accessions and showed that cultivated barley is structured into six genetically-defined groups that display admixture, resulting at least in part from two or more significant passages of gene flow with distinct wild populations. The six groups are descended from a single founding population that emerged in the western Fertile Crescent. Only a few loci were universally targeted by selection, the identity of these suggesting that changes in seedling emergence and pathogen resistance could represent crucial domestication switches. Subsequent selection operated on a regional basis and strongly contributed to differentiation of the genetic groups. CONCLUSIONS: Identification of genetically-defined groups provides clarity to our understanding of the population history of cultivated barley. Inference of population splits and mixtures together with analysis of selection sweeps indicate descent from a single founding population, which emerged in the western Fertile Crescent. This founding population underwent relatively little genetic selection, those changes that did occur affecting traits involved in seedling emergence and pathogen resistance, indicating that these phenotypes should be considered as 'domestication traits'. During its expansion out of the western Fertile Crescent, the crop underwent regional episodes of gene flow and selection, giving rise to a modern genetic signature that has been interpreted as evidence for multiple domestications, but which we show can be rationalized with a single origin.


Asunto(s)
Hordeum , Evolución Biológica , Domesticación , Flujo Génico , Hordeum/genética , Filogenia
5.
Plant J ; 94(4): 721-734, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29575237

RESUMEN

Genetic and physical maps are powerful tools to anchor fragmented draft genome assemblies generated from next-generation sequencing. Currently, two draft assemblies of Nelumbo nucifera, the genomes of 'China Antique' and 'Chinese Tai-zi', have been released. However, there is presently no information on how the sequences are assembled into chromosomes in N. nucifera. The lack of physical maps and inadequate resolution of available genetic maps hindered the assembly of N. nucifera chromosomes. Here, a linkage map of N. nucifera containing 2371 bin markers [217 577 single nucleotide polymorphisms (SNPs)] was constructed using restriction-site associated DNA sequencing data of 181 F2 individuals and validated by adding 197 simple sequence repeat (SSR) markers. Additionally, a BioNano optical map covering 86.20% of the 'Chinese Tai-zi' genome was constructed. The draft assembly of 'Chinese Tai-zi' was improved based on the BioNano optical map, showing an increase of the scaffold N50 from 0.989 to 1.48 Mb. Using a combination of multiple maps, 97.9% of the scaffolds in the 'Chinese Tai-zi' draft assembly and 97.6% of the scaffolds in the 'China Antique' draft assembly were anchored into pseudo-chromosomes, and the centromere regions along the pseudo-chromosomes were identified. An evolutionary scenario was proposed to reach the modern N. nucifera karyotype from the seven ancestral eudicot chromosomes. The present study provides the highest-resolution linkage map, the optical map and chromosome level genome assemblies for N. nucifera, which are valuable for the breeding and cultivation of N. nucifera and future studies of comparative and evolutionary genomics in angiosperms.


Asunto(s)
Mapeo Cromosómico , Cromosomas de las Plantas/genética , Genoma de Planta/genética , Nelumbo/genética , Polimorfismo de Nucleótido Simple/genética , China , Ligamiento Genético , Marcadores Genéticos/genética , Genómica , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Cariotipo , Repeticiones de Microsatélite/genética , Fitomejoramiento , Análisis de Secuencia de ADN
6.
Plant J ; 92(5): 963-975, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28940759

RESUMEN

Bottle gourd (Lagenaria siceraria) is an important vegetable crop as well as a rootstock for other cucurbit crops. In this study, we report a high-quality 313.4-Mb genome sequence of a bottle gourd inbred line, USVL1VR-Ls, with a scaffold N50 of 8.7 Mb and the longest of 19.0 Mb. About 98.3% of the assembled scaffolds are anchored to the 11 pseudomolecules. Our comparative genomic analysis identifies chromosome-level syntenic relationships between bottle gourd and other cucurbits, as well as lineage-specific gene family expansions in bottle gourd. We reconstructed the genome of the most recent common ancestor of Cucurbitaceae, which revealed that the ancestral Cucurbitaceae karyotypes consisted of 12 protochromosomes with 18 534 protogenes. The 12 protochromosomes are largely retained in the modern melon genome, while have undergone different degrees of shuffling events in other investigated cucurbit genomes. The 11 bottle gourd chromosomes derive from the ancestral Cucurbitaceae karyotypes followed by 19 chromosomal fissions and 20 fusions. The bottle gourd genome sequence has facilitated the mapping of a dominant monogenic locus, Prs, conferring Papaya ring-spot virus (PRSV) resistance in bottle gourd, to a 317.8-kb region on chromosome 1. We have developed a cleaved amplified polymorphic sequence (CAPS) marker tightly linked to the Prs locus and demonstrated its potential application in marker-assisted selection of PRSV resistance in bottle gourd. This study provides insights into the paleohistory of Cucurbitaceae genome evolution, and the high-quality genome sequence of bottle gourd provides a useful resource for plant comparative genomics studies and cucurbit improvement.


Asunto(s)
Cucurbita/genética , Cucurbitaceae/genética , Resistencia a la Enfermedad/genética , Sitios Genéticos/genética , Genoma de Planta/genética , Potyvirus/metabolismo , Evolución Biológica , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Cucurbita/virología , Enfermedades de las Plantas/virología
7.
New Phytol ; 213(3): 1477-1486, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27551821

RESUMEN

The origin of bread wheat (Triticum aestivum; AABBDD) has been a subject of controversy and of intense debate in the scientific community over the last few decades. In 2015, three articles published in New Phytologist discussed the origin of hexaploid bread wheat (AABBDD) from the diploid progenitors Triticum urartu (AA), a relative of Aegilops speltoides (BB) and Triticum tauschii (DD). Access to new genomic resources since 2013 has offered the opportunity to gain novel insights into the paleohistory of modern bread wheat, allowing characterization of its origin from its diploid progenitors at unprecedented resolution. We propose a reconciled evolutionary scenario for the modern bread wheat genome based on the complementary investigation of transposable element and mutation dynamics between diploid, tetraploid and hexaploid wheat. In this scenario, the structural asymmetry observed between the A, B and D subgenomes in hexaploid bread wheat derives from the cumulative effect of diploid progenitor divergence, the hybrid origin of the D subgenome, and subgenome partitioning following the polyploidization events.


Asunto(s)
Evolución Biológica , Pan , Triticum/genética , Elementos Transponibles de ADN/genética , Genoma de Planta , Modelos Genéticos , Mutagénesis Insercional/genética , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , Sintenía/genética
8.
Plant Physiol ; 167(1): 189-99, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25398545

RESUMEN

Bread wheat (Triticum aestivum) inflorescences, or spikes, are characteristically unbranched and normally bear one spikelet per rachis node. Wheat mutants on which supernumerary spikelets (SSs) develop are particularly useful resources for work towards understanding the genetic mechanisms underlying wheat inflorescence architecture and, ultimately, yield components. Here, we report the characterization of genetically unrelated mutants leading to the identification of the wheat FRIZZY PANICLE (FZP) gene, encoding a member of the APETALA2/Ethylene Response Factor transcription factor family, which drives the SS trait in bread wheat. Structural and functional characterization of the three wheat FZP homoeologous genes (WFZP) revealed that coding mutations of WFZP-D cause the SS phenotype, with the most severe effect when WFZP-D lesions are combined with a frameshift mutation in WFZP-A. We provide WFZP-based resources that may be useful for genetic manipulations with the aim of improving bread wheat yield by increasing grain number.


Asunto(s)
Flores/crecimiento & desarrollo , Genes de Plantas/fisiología , Triticum/genética , Flores/genética , Mutación del Sistema de Lectura/genética , Mutación del Sistema de Lectura/fisiología , Genes de Plantas/genética , Sitios Genéticos/genética , Fenotipo , Triticum/crecimiento & desarrollo , Triticum/fisiología
9.
Am J Bot ; 103(7): 1167-74, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27425631

RESUMEN

How did plant species emerge from their most recent common ancestors (MRCAs) 250 million years ago? Modern plant genomes help to address such key questions in unveiling precise species genealogies. The field of paleogenomics is undergoing a paradigm shift for investigating species evolution from the study of ancestral genomes from extinct species to deciphering the evolutionary forces (in terms of duplication, fusion, fission, deletion, and translocation) that drove present-day plant diversity (in terms of chromosome/gene number and genome size). In this review, inferred ancestral karyotype genomes are shown to be powerful tools to (1) unravel the past history of extant species by recovering the variations of ancestral genomic compartments and (2) accelerate translational research by facilitating the transfer of genomic information from model systems to species of agronomic interest.


Asunto(s)
Genoma de Planta/genética , Poaceae/genética , Poliploidía , Evolución Biológica , Genómica , Cariotipo
10.
BMC Genomics ; 16: 112, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25765701

RESUMEN

BACKGROUND: Many northern-hemisphere forests are dominated by oaks. These species extend over diverse environmental conditions and are thus interesting models for studies of plant adaptation and speciation. The genomic toolbox is an important asset for exploring the functional variation associated with natural selection. RESULTS: The assembly of previously available and newly developed long and short sequence reads for two sympatric oak species, Quercus robur and Quercus petraea, generated a comprehensive catalog of transcripts for oak. The functional annotation of 91 k contigs demonstrated the presence of a large proportion of plant genes in this unigene set. Comparisons with SwissProt accessions and five plant gene models revealed orthologous relationships, making it possible to decipher the evolution of the oak genome. In particular, it was possible to align 9.5 thousand oak coding sequences with the equivalent sequences on peach chromosomes. Finally, RNA-seq data shed new light on the gene networks underlying vegetative bud dormancy release, a key stage in development allowing plants to adapt their phenology to the environment. CONCLUSION: In addition to providing a vast array of expressed genes, this study generated essential information about oak genome evolution and the regulation of genes associated with vegetative bud phenology, an important adaptive traits in trees. This resource contributes to the annotation of the oak genome sequence and will provide support for forward genetics approaches aiming to link genotypes with adaptive phenotypes.


Asunto(s)
Adaptación Fisiológica/genética , Regulación de la Expresión Génica de las Plantas , Latencia en las Plantas/genética , Transcriptoma/genética , Secuencia de Bases , Mapeo Cromosómico , Especiación Genética , Genoma de Planta , Quercus/genética , Quercus/crecimiento & desarrollo , Análisis de Secuencia de ARN
11.
Plant Cell Physiol ; 56(1): e4, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25432975

RESUMEN

Comparative genomics combined with phylogenetic reconstructions are powerful approaches to study the evolution of genes and genomes. However, the current rapid expansion of the volume of genomic information makes it increasingly difficult to interrogate, integrate and synthesize comparative genome data while taking into account the maximum breadth of information available. GenomicusPlants (http://www.genomicus.biologie.ens.fr/genomicus-plants) is an extension of the Genomicus webserver that addresses this issue by allowing users to explore flowering plant genomes in an intuitive way, across the broadest evolutionary scales. Extant genomes of 26 flowering plants can be analyzed, as well as 23 ancestral reconstructed genomes. Ancestral gene order provides a long-term chronological view of gene order evolution, greatly facilitating comparative genomics and evolutionary studies. Four main interfaces ('views') are available where: (i) PhyloView combines phylogenetic trees with comparisons of genomic loci across any number of genomes; (ii) AlignView projects loci of interest against all other genomes to visualize its topological conservation; (iii) MatrixView compares two genomes in a classical dotplot representation; and (iv) Karyoview visualizes chromosome karyotypes 'painted' with colours of another genome of interest. All four views are interconnected and benefit from many customizable features.


Asunto(s)
Bases de Datos Genéticas , Evolución Molecular , Genoma de Planta/genética , Genómica , Magnoliopsida/genética , Interfaz Usuario-Computador , Orden Génico , Almacenamiento y Recuperación de la Información , Internet , Filogenia , Sintenía
12.
Plant Cell ; 24(5): 1776-92, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22589464

RESUMEN

The recent availability of plant genome sequences, combined with a robust evolutionary scenario of the modern monocot and eudicot karyotypes from their diploid ancestors, offers an opportunity to gain insights into microRNA (miRNA) gene paleohistory in plants. Characterization and comparison of miRNAs and associated protein-coding targets in plants allowed us to unravel (1) contrasted genome conservation patterns of miRNAs in monocots and eudicots after whole-genome duplication (WGD), (2) an ancestral miRNA founder pool in the monocot genomes dating back to 100 million years ago, (3) miRNA subgenome dominance during the post-WGD diploidization process with selective miRNA deletion complemented with possible transposable element-mediated return flows, and (4) the miRNA/target interaction-directed differential loss/retention of miRNAs following the gene dosage balance rule. Together, our data suggest that overretained miRNAs in grass genomes may be implicated in connected gene regulations for stress responses, which is essential for plant adaptation and useful for crop variety innovation.


Asunto(s)
Genoma de Planta/genética , MicroARNs/genética , Poaceae/genética
13.
Plant J ; 76(6): 1030-44, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24164652

RESUMEN

Bread wheat derives from a grass ancestor structured in seven protochromosomes followed by a paleotetraploidization to reach a 12 chromosomes intermediate and a neohexaploidization (involving subgenomes A, B and D) event that finally shaped the 21 modern chromosomes. Insights into wheat syntenome in sequencing conserved orthologous set (COS) genes unravelled differences in genomic structure (such as gene conservation and diversity) and genetical landscape (such as recombination pattern) between ancestral as well as recent duplicated blocks. Contrasted evolutionary plasticity is observed where the B subgenome appears more sensitive (i.e. plastic) in contrast to A as dominant (i.e. stable) in response to the neotetraploidization and D subgenome as supra-dominant (i.e. pivotal) in response to the neohexaploidization event. Finally, the wheat syntenome, delivered through a public web interface PlantSyntenyViewer at http://urgi.versailles.inra.fr/synteny-wheat, can be considered as a guide for accelerated dissection of major agronomical traits in wheat.


Asunto(s)
Cromosomas de las Plantas/genética , Evolución Molecular , Genoma de Planta/genética , Genómica , Sintenía/genética , Triticum/genética , Secuencia Conservada , ADN de Plantas/química , ADN de Plantas/genética , Genes Dominantes , Marcadores Genéticos , Modelos Biológicos , Polimorfismo de Nucleótido Simple , Poliploidía , Análisis de Secuencia de ADN
14.
BMC Genomics ; 15: 187, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24617999

RESUMEN

BACKGROUND: The recent access to a large set of genome sequences, combined with a robust evolutionary scenario of modern monocot (i.e. grasses) and eudicot (i.e. rosids) species from their founder ancestors, offered the opportunity to gain insights into disease resistance genes (R-genes) evolutionary plasticity. RESULTS: We unravel in the current article (i) a R-genes repertoire consisting in 7883 for monocots and 15758 for eudicots, (ii) a contrasted R-genes conservation with 23.8% for monocots and 6.6% for dicots, (iii) a minimal ancestral founder pool of 384 R-genes for the monocots and 150 R-genes for the eudicots, (iv) a general pattern of organization in clusters accounting for more than 60% of mapped R-genes, (v) a biased deletion of ancestral duplicated R-genes between paralogous blocks possibly compensated by clusterization, (vi) a bias in R-genes clusterization where Leucine-Rich Repeats act as a 'glue' for domain association, (vii) a R-genes/miRNAs interome enriched toward duplicated R-genes. CONCLUSIONS: Together, our data may suggest that R-genes family plasticity operated during plant evolution (i) at the structural level through massive duplicates loss counterbalanced by massive clusterization following polyploidization; as well as at (ii) the regulation level through microRNA/R-gene interactions acting as a possible source of functional diploidization of structurally retained R-genes duplicates. Such evolutionary shuffling events leaded to CNVs (i.e. Copy Number Variation) and PAVs (i.e. Presence Absence Variation) between related species operating in the decay of R-genes colinearity between plant species.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Plantas/genética , Evolución Molecular , Duplicación de Gen , Genoma de Planta , MicroARNs/metabolismo , Proteínas de Plantas/genética , Poliploidía
15.
Plant Biotechnol J ; 12(6): 787-96, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24646323

RESUMEN

High-density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array including about 90,000 gene-associated SNPs and used it to characterize genetic variation in allohexaploid and allotetraploid wheat populations. The array includes a significant fraction of common genome-wide distributed SNPs that are represented in populations of diverse geographical origin. We used density-based spatial clustering algorithms to enable high-throughput genotype calling in complex data sets obtained for polyploid wheat. We show that these model-free clustering algorithms provide accurate genotype calling in the presence of multiple clusters including clusters with low signal intensity resulting from significant sequence divergence at the target SNP site or gene deletions. Assays that detect low-intensity clusters can provide insight into the distribution of presence-absence variation (PAV) in wheat populations. A total of 46 977 SNPs from the wheat 90K array were genetically mapped using a combination of eight mapping populations. The developed array and cluster identification algorithms provide an opportunity to infer detailed haplotype structure in polyploid wheat and will serve as an invaluable resource for diversity studies and investigating the genetic basis of trait variation in wheat.


Asunto(s)
Variación Genética , Genoma de Planta/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple/genética , Poliploidía , Triticum/genética , Alelos , Mapeo Cromosómico , Análisis por Conglomerados , Frecuencia de los Genes/genética , Sitios Genéticos , Marcadores Genéticos , Genotipo
16.
Plant Cell ; 23(4): 1249-63, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21467582

RESUMEN

We used a novel approach that incorporated chromosome sorting, next-generation sequencing, array hybridization, and systematic exploitation of conserved synteny with model grasses to assign ~86% of the estimated ~32,000 barley (Hordeum vulgare) genes to individual chromosome arms. Using a series of bioinformatically constructed genome zippers that integrate gene indices of rice (Oryza sativa), sorghum (Sorghum bicolor), and Brachypodium distachyon in a conserved synteny model, we were able to assemble 21,766 barley genes in a putative linear order. We show that the barley (H) genome displays a mosaic of structural similarity to hexaploid bread wheat (Triticum aestivum) A, B, and D subgenomes and that orthologous genes in different grasses exhibit signatures of positive selection in different lineages. We present an ordered, information-rich scaffold of the barley genome that provides a valuable and robust framework for the development of novel strategies in cereal breeding.


Asunto(s)
Cromosomas de las Plantas/genética , Genoma de Planta/genética , Genómica/métodos , Hordeum/genética , Centrómero/genética , Evolución Molecular , Orden Génico/genética , Reordenamiento Génico/genética , Genes de Plantas/genética , Modelos Genéticos , Oryza/genética , Análisis de Secuencia de ADN , Triticum/genética
17.
Theor Appl Genet ; 127(7): 1463-89, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24913362

RESUMEN

Transferring the knowledge bases between related species may assist in enlarging the yield potential of crop plants. Being cereals, rice and wheat share a high level of gene conservation; however, they differ at metabolic levels as a part of the environmental adaptation resulting in different yield capacities. This review focuses on the current understanding of genetic and molecular regulation of yield-associated traits in both crop species, highlights the similarities and differences and presents the putative knowledge gaps. We focus on the traits associated with phenology, photosynthesis, and assimilate partitioning and lodging resistance; the most important drivers of yield potential. Currently, there are large knowledge gaps in the genetic and molecular control of such major biological processes that can be filled in a translational biology approach in transferring genomics and genetics informations between rice and wheat.


Asunto(s)
Oryza/genética , Triticum/genética , Adaptación Fisiológica/genética , Cruzamiento , Hibridación Genómica Comparativa , Genómica , Metabolómica , Fenotipo , Fotosíntesis/genética , Sitios de Carácter Cuantitativo
18.
Trends Plant Sci ; 29(3): 303-318, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37833181

RESUMEN

The green revolution successfully increased agricultural output in the early 1960s by relying primarily on three pillars: plant breeding, irrigation, and chemical fertilization. Today, the need to reduce the use of chemical fertilizers, water scarcity, and future environmental changes, together with a growing population, requires innovative strategies to adapt to a new context and prevent food shortages. Therefore, scientists from around the world are directing their efforts to breed crops for future environments to sustainably produce more nutritious food. Herein, we propose scientific avenues to be reinforced in selecting varieties, including crop wild relatives, either for monoculture or mixed cropping systems, taking advantage of plant-microbial interactions, while considering the diversity of organisms associated with crops and unlocking combinatorial nutritional stresses.


Asunto(s)
Productos Agrícolas , Fitomejoramiento , Productos Agrícolas/genética , Agricultura , Adaptación Fisiológica , Fertilizantes
19.
Genome Res ; 20(11): 1545-57, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20876790

RESUMEN

The comparison of the chromosome numbers of today's species with common reconstructed paleo-ancestors has led to intense speculation of how chromosomes have been rearranged over time in mammals. However, similar studies in plants with respect to genome evolution as well as molecular mechanisms leading to mosaic synteny blocks have been lacking due to relevant examples of evolutionary zooms from genomic sequences. Such studies require genomes of species that belong to the same family but are diverged to fall into different subfamilies. Our most important crops belong to the family of the grasses, where a number of genomes have now been sequenced. Based on detailed paleogenomics, using inference from n = 5-12 grass ancestral karyotypes (AGKs) in terms of gene content and order, we delineated sequence intervals comprising a complete set of junction break points of orthologous regions from rice, maize, sorghum, and Brachypodium genomes, representing three different subfamilies and different polyploidization events. By focusing on these sequence intervals, we could show that the chromosome number variation/reduction from the n = 12 common paleo-ancestor was driven by nonrandom centric double-strand break repair events. It appeared that the centromeric/telomeric illegitimate recombination between nonhomologous chromosomes led to nested chromosome fusions (NCFs) and synteny break points (SBPs). When intervals comprising NCFs were compared in their structure, we concluded that SBPs (1) were meiotic recombination hotspots, (2) corresponded to high sequence turnover loci through repeat invasion, and (3) might be considered as hotspots of evolutionary novelty that could act as a reservoir for producing adaptive phenotypes.


Asunto(s)
Evolución Molecular , Genoma de Planta , Poaceae/genética , Recombinación Genética/fisiología , Brachypodium/genética , Cromosomas de las Plantas , Especiación Genética , Genoma de Planta/genética , Cariotipificación/métodos , Modelos Biológicos , Oryza/genética , Filogenia , Sorghum/genética , Sintenía , Zea mays/genética
20.
Plant Cell ; 22(6): 1686-701, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20581307

RESUMEN

To improve our understanding of the organization and evolution of the wheat (Triticum aestivum) genome, we sequenced and annotated 13-Mb contigs (18.2 Mb) originating from different regions of its largest chromosome, 3B (1 Gb), and produced a 2x chromosome survey by shotgun Illumina/Solexa sequencing. All regions carried genes irrespective of their chromosomal location. However, gene distribution was not random, with 75% of them clustered into small islands containing three genes on average. A twofold increase of gene density was observed toward the telomeres likely due to high tandem and interchromosomal duplication events. A total of 3222 transposable elements were identified, including 800 new families. Most of them are complete but showed a highly nested structure spread over distances as large as 200 kb. A succession of amplification waves involving different transposable element families led to contrasted sequence compositions between the proximal and distal regions. Finally, with an estimate of 50,000 genes per diploid genome, our data suggest that wheat may have a higher gene number than other cereals. Indeed, comparisons with rice (Oryza sativa) and Brachypodium revealed that a high number of additional noncollinear genes are interspersed within a highly conserved ancestral grass gene backbone, supporting the idea of an accelerated evolution in the Triticeae lineages.


Asunto(s)
Elementos Transponibles de ADN , Evolución Molecular , Genoma de Planta , Triticum/genética , Cromosomas Artificiales Bacterianos , Cromosomas de las Plantas , Mapeo Contig , ADN de Plantas/genética , Duplicación de Gen , Genes de Plantas , Datos de Secuencia Molecular , Familia de Multigenes , Análisis de Secuencia de ADN , Telómero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA