Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Platelets ; 30(3): 305-313, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29442535

RESUMEN

The purpose of antithrombotic therapy is the prevention of thrombus formation and/or its extension with a minimum risk of bleeding. The inhibition of a variety of proteolytic processes, particularly those of the coagulation cascade, has been reported as a property of plant protease inhibitors. The role of trypsin inhibitors (TIs) from Delonix regia (Dr) and Acacia schweinfurthii (As), members of the Kunitz family of protease inhibitors, was investigated on blood coagulation, platelet aggregation, and thrombus formation. Different from Acacia schweinfurthii trypsin inhibitor (AsTI), Delonix regia trypsin inhibitor (DrTI) is a potent inhibitor of FXIa with a Kiapp of 1.3 × 10-9 M. In vitro, both inhibitors at 100 µg corresponding to the concentrations of 21 µM and 15.4 µM of DrTI and AsTI, respectively, increased approximately 2.0 times the activated partial thromboplastin time (aPTT) in human plasma compared to the control, likely due to the inhibition of human plasma kallikrein (huPK) or activated factor XI (FXIa), in the case of DrTI. Investigating in vivo models of arterial thrombus formation and bleeding time, DrTI and AsTI, 1.3 µM and 0.96 µM, respectively, prolonged approximately 50% the time for total carotid artery occlusion in mice compared to the control. In contrast to heparin, the bleeding time in mice treated with the two inhibitors did not differ from that of the control group. DrTI and AsTI inhibited 49.3% and 63.8%, respectively, ex vivo murine platelet aggregation induced by adenosine diphosphate (ADP), indicating that these protein inhibitors prevent arterial thrombus formation possibly by interfering with the plasma kallikrein (PK) proteolytic action on the intrinsic coagulation pathway and its ability to enhance the platelet aggregation activity on the intravascular compartment leading to the improvement of a thrombus.


Asunto(s)
Plantas/química , Calicreína Plasmática/metabolismo , Inhibidores de Proteasas/uso terapéutico , Trombosis/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Inhibidores de Proteasas/farmacología
2.
Biol Chem ; 395(9): 1027-35, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25153385

RESUMEN

Arterial thrombosis is an important complication of diabetes and cancer, being an important target for therapeutic intervention. Crataeva tapia bark lectin (CrataBL) has been previously shown to have hypoglycemiant effect and also to induce cancer cell apoptosis. It also showed inhibitory activity against Factor Xa (Kiapp=8.6 µm). In the present study, we evaluated the anti-thrombotic properties of CrataBL in arterial thrombosis model. CrataBL prolongs the activated partial thromboplastin time on human and mouse plasma, and it impairs the heparin-induced potentiation of antithrombin III and heparin-induced platelet activation in the presence of low-dose ADP. It is likely that the dense track of positive charge on CrataBL surface competes with the heparin ability to bind to antithrombin III and to stimulate platelets. In the photochemically induced thrombosis model in mice, in the groups treated with 1.25, 5.0, or 10 mg/kg CrataBL, prior to the thrombus induction, the time of total artery occlusion was prolonged by 33.38%, 65%, and 66.11%, respectively, relative to the time of the control group. In contrast to heparin, the bleeding time in CrataBL-treated mice was no longer than in the control. In conclusion, CrataBL was effective in blocking coagulation and arterial thrombus formation, without increasing bleeding time.


Asunto(s)
Coagulación Sanguínea/efectos de los fármacos , Inhibidores del Factor Xa/farmacología , Lectinas de Plantas/farmacología , Trombosis/patología , Animales , Capparaceae/química , Arterias Carótidas/efectos de los fármacos , Cromatografía de Afinidad , Modelos Animales de Enfermedad , Humanos , Hidrólisis/efectos de los fármacos , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Tiempo de Tromboplastina Parcial , Agregación Plaquetaria/efectos de los fármacos , Tiempo de Protrombina , Flujo Sanguíneo Regional/efectos de los fármacos , Sefarosa/análogos & derivados , Sefarosa/química , Especificidad por Sustrato/efectos de los fármacos
3.
Cancer Lett ; 491: 108-120, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-32841713

RESUMEN

Breast cancer is the most common malignant tumor among women worldwide, and triple-negative breast cancer is the most aggressive type of breast cancer, which does not respond to hormonal therapies. The protease inhibitor, EcTI, extracted from seeds of Enterolobium contortisiliquum, acts on the main signaling pathways of the MDA-MB-231 triple-negative breast cancer cells. This inhibitor, when bound to collagen I of the extracellular matrix, triggers a series of pathways capable of decreasing the viability, adhesion, migration, and invasion of these cells. This inhibitor can interfere in the cell cycle process through the main signaling pathways such as the adhesion, Integrin/FAK/SRC, Akt, ERK, and the cell death pathway BAX and BCL-2. It also acts by reducing the main inflammatory cytokines such as TGF-α, IL-6, IL-8, and MCP-1, besides NFκB, a transcription factor, responsible for the aggressive and metastatic characteristics of this type of tumor. Thus, the inhibitor was able to reduce the main processes of carcinogenesis of this type of cancer.


Asunto(s)
Citocinas/antagonistas & inhibidores , Fabaceae/química , Glicosaminoglicanos/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Inhibidores de Tripsina/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colágeno Tipo I/metabolismo , Citocinas/biosíntesis , Femenino , Humanos , Metaloproteinasas de la Matriz/metabolismo , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Inhibidores de Tripsina/uso terapéutico
4.
Front Microbiol ; 9: 553, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29662478

RESUMEN

Trypanosoma cruzi is the etiologic agent of Chagas' disease, which affects 6-7 million people worldwide. Different strains of T. cruzi present specific genotypic and phenotypic characteristics that affect the host-pathogen interactions, and thus, the parasite has been classified into six groups (TcI to TcVI). T. cruzi infection presents two clinical phases, acute and chronic, both with distinct characteristics and important participation by the immune system. However, the specific contributions of parasite and host factors in the disease phases are not yet fully understood. The murine model for Chagas' disease is well-established and reproduces important features of the human infection, providing an experimental basis for the study of host lineages and parasite strains. Thus, we evaluated acute and chronic infection by the G (TcI) and CL (TcVI) strains of T. cruzi, which have distinct tropisms and infectivity, in two inbred mice lineages (C57BL/6 and BALB/c) that display variable degrees of susceptibility to different T. cruzi strains. Analysis of the parasite loads in host tissues by qPCR showed that CL strain established an infection faster than the G strain; at the same time, the response in BALB/c mice, although diverse in terms of cytokine secretion, was initiated earlier than that in C57BL/6 mice. At the parasitemia peak in the acute phase, we observed, either by confocal microscopy or by qPCR, that the infection was disseminated in all groups analyzed, with some differences concerning parasite tropism; at this point, all animals responded to infection by increasing the serum concentrations of cytokines. However, BALB/c mice seemed to better regulate the immune response than C57BL/6 mice. Indeed, in the chronic phase, C57BL/6 mice still presented exacerbated cytokine and chemokine responses. In summary, our results indicate that in these experimental models, the deregulation of immune response that is typical of chronic Chagas' disease may be due to control loss over pro- and anti-inflammatory cytokines early in the acute phase of the disease, depending primarily on the host background rather than the parasite strain.

5.
Nat Prod Res ; 30(23): 2712-2715, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30919696

RESUMEN

Araucaria angustifolia seeds are characterised by a relatively high content of starch and protein. This study aimed to verify the presence of α-amylase inhibitors in the seeds and to characterise a trypsin inhibitor found in the embryo tissues. Inhibitor purification was carried out by the saline extraction of proteins, acetone precipitation and affinity chromatography. Two protein bands of molecular weight estimated by SDS-PAGE at about 35 kDa were further examined by high-performance liquid chromatography coupled to a mass spectrometer and were shown to be 36.955 Da (AaTI-1) and 35.450 Da (AaTI-2). The sequence of the N-terminal region shows that AaTI-1 and AaTI-2 are structurally similar to plant inhibitors of the serpin family. A mixture of AaTI-1 and AaTI-2, identified as AaTI, shows selectivity for the inhibition of trypsin (Kiapp 85 nM) and plasmin (Kiapp 7.0 µM), but it does not interfere with the chymotrypsin, human plasma kallikrein, porcine kallikrein or other coagulation enzymes activity.

6.
Thromb Res ; 133(5): 945-51, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24642009

RESUMEN

The Bauhinia bauhinioides Kallikrein Inhibitor (BbKI) is a Kunitz-type serine peptidase inhibitor of plant origin that has been shown to impair the viability of some tumor cells and to feature a potent inhibitory activity against human and rat plasma kallikrein (Kiapp 2.4 nmol/L and 5.2 nmol/L, respectively). This inhibitory activity is possibly responsible for an effect on hemostasis by prolonging activated partial thromboplastin time (aPTT). Because the association between cancer and thrombosis is well established, we evaluated the possible antithrombotic activity of this protein in venous and arterial thrombosis models. Vein thrombosis was studied in the vena cava ligature model in Wistar rats, and arterial thrombosis in the photochemical induced endothelium lesion model in the carotid artery of C57 black 6 mice. BbKI at a concentration of 2.0 mg/kg reduced the venous thrombus weight by 65% in treated rats in comparison to rats in the control group. The inhibitor prolonged the time for total artery occlusion in the carotid artery model mice indicating that this potent plasma kallikrein inhibitor prevented thrombosis.


Asunto(s)
Fibrinolíticos/farmacología , Proteínas de Plantas/farmacología , Trombosis/tratamiento farmacológico , Animales , Bauhinia , Coagulación Sanguínea/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Distribución Aleatoria , Ratas , Ratas Wistar , Trombina/antagonistas & inhibidores , Trombina/farmacología , Trombosis/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA