Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Nucleic Acids Res ; 52(6): 2961-2976, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214222

RESUMEN

Integrons are genetic platforms that acquire new genes encoded in integron cassettes (ICs), building arrays of adaptive functions. ICs generally encode promoterless genes, whose expression relies on the platform-associated Pc promoter, with the cassette array functioning as an operon-like structure regulated by the distance to the Pc. This is relevant in large sedentary chromosomal integrons (SCIs) carrying hundreds of ICs, like those in Vibrio species. We selected 29 gene-less cassettes in four Vibrio SCIs, and explored whether their function could be related to the transcription regulation of adjacent ICs. We show that most gene-less cassettes have promoter activity on the sense strand, enhancing the expression of downstream cassettes. Additionally, we identified the transcription start sites of gene-less ICs through 5'-RACE. Accordingly, we found that most of the superintegron in Vibrio cholerae is not silent. These promoter cassettes can trigger the expression of a silent dfrB9 cassette downstream, increasing trimethoprim resistance >512-fold in V. cholerae and Escherichia coli. Furthermore, one cassette with an antisense promoter can reduce trimethoprim resistance when cloned downstream. Our findings highlight the regulatory role of gene-less cassettes in the expression of adjacent cassettes, emphasizing their significance in SCIs and their clinical importance if captured by mobile integrons.


Asunto(s)
Integrones , Vibrio , Integrones/genética , Regiones Promotoras Genéticas , Vibrio/genética , Vibrio cholerae/genética , Vibrionaceae/genética
2.
Proc Natl Acad Sci U S A ; 120(51): e2314135120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38096417

RESUMEN

Conjugative plasmids play a key role in the dissemination of antimicrobial resistance (AMR) genes across bacterial pathogens. AMR plasmids are widespread in clinical settings, but their distribution is not random, and certain associations between plasmids and bacterial clones are particularly successful. For example, the globally spread carbapenem resistance plasmid pOXA-48 can use a wide range of enterobacterial species as hosts, but it is usually associated with a small number of specific Klebsiella pneumoniae clones. These successful associations represent an important threat for hospitalized patients. However, knowledge remains limited about the factors determining AMR plasmid distribution in clinically relevant bacteria. Here, we combined in vitro and in vivo experimental approaches to analyze pOXA-48-associated AMR levels and conjugation dynamics in a collection of wild-type enterobacterial strains isolated from hospitalized patients. Our results revealed significant variability in these traits across different bacterial hosts, with Klebsiella spp. strains showing higher pOXA-48-mediated AMR and conjugation frequencies than Escherichia coli strains. Using experimentally determined parameters, we developed a simple mathematical model to interrogate the contribution of AMR levels and conjugation permissiveness to plasmid distribution in bacterial communities. The simulations revealed that a small subset of clones, combining high AMR levels and conjugation permissiveness, play a critical role in stabilizing the plasmid in different polyclonal microbial communities. These results help to explain the preferential association of plasmid pOXA-48 with K. pneumoniae clones in clinical settings. More generally, our study reveals that species- and strain-specific variability in plasmid-associated phenotypes shape AMR evolution in clinically relevant bacterial communities.


Asunto(s)
Antibacterianos , Tolerancia , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana/genética , Plásmidos/genética , Klebsiella pneumoniae/genética , Klebsiella/genética , Escherichia coli/genética , Bacterias/genética
3.
Mol Syst Biol ; 20(4): 311-320, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38409539

RESUMEN

Antimicrobial resistance (AMR) in bacteria is a major public health threat and conjugative plasmids play a key role in the dissemination of AMR genes among bacterial pathogens. Interestingly, the association between AMR plasmids and pathogens is not random and certain associations spread successfully at a global scale. The burst of genome sequencing has increased the resolution of epidemiological programs, broadening our understanding of plasmid distribution in bacterial populations. Despite the immense value of these studies, our ability to predict future plasmid-bacteria associations remains limited. Numerous empirical studies have recently reported systematic patterns in genetic interactions that enable predictability, in a phenomenon known as global epistasis. In this perspective, we argue that global epistasis patterns hold the potential to predict interactions between plasmids and bacterial genomes, thereby facilitating the prediction of future successful associations. To assess the validity of this idea, we use previously published data to identify global epistasis patterns in clinically relevant plasmid-bacteria associations. Furthermore, using simple mechanistic models of antibiotic resistance, we illustrate how global epistasis patterns may allow us to generate new hypotheses on the mechanisms associated with successful plasmid-bacteria associations. Collectively, we aim at illustrating the relevance of exploring global epistasis in the context of plasmid biology.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Epistasis Genética , Plásmidos/genética , Genoma Bacteriano , Bacterias/genética
4.
PLoS Biol ; 19(7): e3001308, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34228713

RESUMEN

The horizontal transfer of mobile DNA is one of the signature moves of bacterial evolution, but the specific rules that govern this transfer remain elusive. In this PLOS Biology issue, Haudiquet and colleagues revealed that the interactions between mobile genetic elements and the bacterial capsule shape the horizontal flow of DNA in an important bacterial pathogen.


Asunto(s)
Cápsulas Bacterianas , Transferencia de Gen Horizontal , Bacterias/genética
5.
Microbiology (Reading) ; 169(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37505800

RESUMEN

Antimicrobial resistance (AMR) in bacteria is a major public health problem. The main route for AMR acquisition in clinically important bacteria is the horizontal transfer of plasmids carrying resistance genes. AMR plasmids allow bacteria to survive antibiotics, but they also entail physiological alterations in the host cell. Multiple studies over the last few years have indicated that these alterations can translate into a fitness cost when antibiotics are absent. However, due to technical limitations, most of these studies are based on analysing new associations between plasmids and bacteria generated in vitro, and we know very little about the effects of plasmids in their native bacterial hosts. In this study, we used a CRISPR-Cas9-tool to selectively cure plasmids from clinical enterobacteria to overcome this limitation. Using this approach, we were able to study the fitness effects of the carbapenem resistance plasmid pOXA-48 in 35 pOXA-48-carrying isolates recovered from hospitalized patients. Our results revealed that pOXA-48 produces variable effects across the collection of wild-type enterobacterial strains naturally carrying the plasmid, ranging from fitness costs to fitness benefits. Importantly, the plasmid was only associated with a significant fitness reduction in four out of 35 clones, and produced no significant changes in fitness in the great majority of isolates. Our results suggest that plasmids produce neutral fitness effects in most native bacterial hosts, helping to explain the great prevalence of plasmids in natural microbial communities.


Asunto(s)
Bacterias , Enterobacteriaceae , Humanos , Enterobacteriaceae/genética , Plásmidos/genética , Bacterias/genética , Antibacterianos/farmacología , beta-Lactamasas/genética
6.
Int Microbiol ; 26(1): 1-9, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36224500

RESUMEN

Antimicrobial resistance (AMR) is currently one of the most concerning threats in public health. The efforts to tackle the problem require a global One Health approach, using multidisciplinary approaches and a thorough understanding of the topic both by the general public and the experts. Currently, the lack of a shared mental model of the problem, the absence of a sense of responsibility amongst the different actors and a deficient education on the topic burden the efforts to slow down the emergency and spread of antimicrobial resistant infections. We here propose a multidisciplinary approach to tackle the AMR problem, taking into consideration not only the input from the biological and medical sciences but also the input from the social sciences. Specifically, we suggest strategies from education and psychology to increase awareness about antimicrobial resistance and to implement more effective interventions. Finally, we advocate for a comprehensive and a solidaristic model as the only solution for a problem which knows no borders. As such, political will and international cooperation will be key to achieve the desired change in antibiotic resistance trend.


Asunto(s)
Antiinfecciosos , Farmacorresistencia Microbiana , Salud Global , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana
7.
Proc Natl Acad Sci U S A ; 117(27): 15755-15762, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32571917

RESUMEN

Mobile genetic elements (MGEs), such as plasmids, promote bacterial evolution through horizontal gene transfer (HGT). However, the rules governing the repertoire of traits encoded on MGEs remain unclear. In this study, we uncovered the central role of genetic dominance shaping genetic cargo in MGEs, using antibiotic resistance as a model system. MGEs are typically present in more than one copy per host bacterium, and as a consequence, genetic dominance favors the fixation of dominant mutations over recessive ones. In addition, genetic dominance also determines the phenotypic effects of horizontally acquired MGE-encoded genes, silencing recessive alleles if the recipient bacterium already carries a wild-type copy of the gene. The combination of these two effects governs the catalog of genes encoded on MGEs. Our results help to understand how MGEs evolve and spread, uncovering the neglected influence of genetic dominance on bacterial evolution. Moreover, our findings offer a framework to forecast the spread and evolvability of MGE-encoded genes, which encode traits of key human interest, such as virulence or antibiotic resistance.


Asunto(s)
Bacterias/genética , Evolución Molecular , Transferencia de Gen Horizontal/genética , Secuencias Repetitivas Esparcidas/genética , Farmacorresistencia Bacteriana/genética , Humanos , Plásmidos/genética , Virulencia/genética
8.
J Antimicrob Chemother ; 77(11): 2960-2963, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35880751

RESUMEN

OBJECTIVES: To investigate the fitness effects of large blaCTX-M-15-harbouring F2:A1:B- plasmids on their native Escherichia coli ST131 H30Rx hosts. METHODS: We selected five E. coli ST131 H30Rx isolates of diverse origin, each carrying an F2:A1:B- plasmid with the blaCTX-M-15 gene. The plasmid was eliminated from each isolate by displacement using an incompatible curing plasmid, pMDP5_cureEC958. WGS was performed to obtain complete chromosome and plasmid sequences of original isolates and to detect chromosomal mutations in 'cured' clones. High-throughput competition assays were conducted to determine the relative fitness of cured clones compared with the corresponding original isolates. RESULTS: We were able to successfully eliminate the F2:A1:B- plasmids from all five original isolates using pMDP5_cureEC958. The F2:A1:B- plasmids produced non-significant fitness effects in three isolates and moderate reductions in relative fitness (3%-4%) in the two remaining isolates. CONCLUSIONS: We conclude that F2:A1:B- plasmids pose low fitness costs in their E. coli ST131 H30Rx hosts. This plasmid-host fitness compatibility is likely to promote the maintenance of antibiotic resistance in this clinically important E. coli lineage.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , beta-Lactamasas/genética , beta-Lactamasas/farmacología , Antibacterianos/farmacología , Plásmidos/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-32457104

RESUMEN

Bacterial plasmids harboring antibiotic resistance genes are critical in the spread of antibiotic resistance. It is known that plasmids differ in their kinetic values, i.e., conjugation rate, segregation rate by copy number incompatibility with related plasmids, and rate of stochastic loss during replication. They also differ in cost to the cell in terms of reducing fitness and in the frequency of compensatory mutations compensating plasmid cost. However, we do not know how variation in these values influences the success of a plasmid and its resistance genes in complex ecosystems, such as the microbiota. Genes are in plasmids, plasmids are in cells, and cells are in bacterial populations and microbiotas, which are inside hosts, and hosts are in human communities at the hospital or the community under various levels of cross-colonization and antibiotic exposure. Differences in plasmid kinetics might have consequences on the global spread of antibiotic resistance. New membrane computing methods help to predict these consequences. In our simulation, conjugation frequency of at least 10-3 influences the dominance of a strain with a resistance plasmid. Coexistence of different antibiotic resistances occurs if host strains can maintain two copies of similar plasmids. Plasmid loss rates of 10-4 or 10-5 or plasmid fitness costs of ≥0.06 favor plasmids located in the most abundant species. The beneficial effect of compensatory mutations for plasmid fitness cost is proportional to this cost at high mutation frequencies (10-3 to 10-5). The results of this computational model clearly show how changes in plasmid kinetics can modify the entire population ecology of antibiotic resistance in the hospital setting.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Conjugación Genética , Farmacorresistencia Bacteriana/genética , Ecosistema , Humanos , Cinética , Plásmidos/genética
10.
J Antimicrob Chemother ; 74(9): 2517-2523, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31225883

RESUMEN

BACKGROUND: Tn5801 [tet(M)], a Tn916-like element with site-specific affinity for the 3' end of the housekeeping gene guaA, may integrate at different chromosomal sites. OBJECTIVES: To characterize the genetic context of Tn5801 to define its transfer dynamics and impact on the evolution of Enterococcus faecalis (Efs). METHODS: WGS (Illumina HiSeq 2500) was performed on the Efs clinical strain Ef1 and primary and secondary transconjugants of Efs strains JH2-2 [which naturally contains Tn5801.B23, an unusual variant that lacks tet(M)], OG1RF and OG1SS carrying different copies of Tn5801-like elements. The transposon structures were analysed using a range of bioinformatics tools allowing us to identify the context of Tn5801-like elements. Growth rates at different tetracycline concentrations (0.5-20 mg/L) were estimated using a Synergy HTX plate reader. RESULTS: Tn5801.B15 [tet(M), 20.3 kb] exists and can be transferred either singly or within Tn6648 (53.2 kb), a composite element that comprises Tn5801.B15 and Tn6647, a newly identified 32.8 kb transposon that contains the prgABCT operon of pheromone-responsive plasmids. These transposons are able to integrate at specific 11 nt sequences at the 3' end of guaA and at other chromosomal sites in Efs genomes, thus being able to generate tandem accretions. These events may increase the number of tet(M) copies, enhancing tetracycline resistance in the recipient strain. CONCLUSIONS: This study describes Tn6647 and Tn6648 (comprising Tn6647 and Tn5801.B15) and highlights the diversity of mechanisms for conjugative mobilization and chromosomal insertion of these elements, which can result in tandem accretion. This strategy would facilitate the adaptation of Efs clones to environmental challenges.


Asunto(s)
Antibacterianos/farmacología , Cromosomas Bacterianos/genética , Elementos Transponibles de ADN/genética , Enterococcus faecalis/genética , Tetraciclina/farmacología , Evolución Biológica , Biología Computacional , Conjugación Genética , Enterococcus faecalis/efectos de los fármacos , Plásmidos/genética , Resistencia a la Tetraciclina/genética , Secuenciación Completa del Genoma
11.
PLoS Genet ; 12(5): e1006005, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27149698

RESUMEN

Novel traits play a key role in evolution, but their origins remain poorly understood. Here we address this problem by using experimental evolution to study bacterial innovation in real time. We allowed 380 populations of Pseudomonas aeruginosa to adapt to 95 different carbon sources that challenged bacteria with either evolving novel metabolic traits or optimizing existing traits. Whole genome sequencing of more than 80 clones revealed profound differences in the genetic basis of innovation and optimization. Innovation was associated with the rapid acquisition of mutations in genes involved in transcription and metabolism. Mutations in pre-existing duplicate genes in the P. aeruginosa genome were common during innovation, but not optimization. These duplicate genes may have been acquired by P. aeruginosa due to either spontaneous gene amplification or horizontal gene transfer. High throughput phenotype assays revealed that novelty was associated with increased pleiotropic costs that are likely to constrain innovation. However, mutations in duplicate genes with close homologs in the P. aeruginosa genome were associated with low pleiotropic costs compared to mutations in duplicate genes with distant homologs in the P. aeruginosa genome, suggesting that functional redundancy between duplicates facilitates innovation by buffering pleiotropic costs.


Asunto(s)
Evolución Molecular , Genómica , Infecciones por Pseudomonas/genética , Pseudomonas aeruginosa/genética , Duplicación de Gen/genética , Transferencia de Gen Horizontal , Pleiotropía Genética , Genoma Bacteriano , Mutación , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/patogenicidad , Transcripción Genética
12.
Artículo en Inglés | MEDLINE | ID: mdl-27895020

RESUMEN

ColE1 plasmids are small mobilizable replicons that play an important role in the spread of antibiotic resistance in Pasteurellaceae In this study, we describe how a natural single nucleotide polymorphism (SNP) near the origin of replication of the ColE1-type plasmid pB1000 found in a Pasteurella multocida clinical isolate generates two independent plasmid variants able to coexist in the same cell simultaneously. Using the Haemophilus influenzae Rd KW20 strain as a model system, we combined antibiotic susceptibility tests, quantitative PCRs, competition assays, and experimental evolution to characterize the consequences of the coexistence of the pB1000 plasmid variants. This coexistence produced an increase of the total plasmid copy number (PCN) in the host bacteria, leading to a rise in both the antibiotic resistance level and the metabolic burden produced by pB1000. Using experimental evolution, we showed that in the presence of ampicillin, the bacteria maintained both plasmid variants for 300 generations. In the absence of antibiotics, on the other hand, the bacteria are capable of reverting to the single-plasmid genotype via the loss of one of the plasmid variants. Our results revealed how a single mutation in plasmid pB1000 provides the bacterial host with a mechanism to increase the PCN and, consequently, the ampicillin resistance level. Crucially, this mechanism can be rapidly reversed to avoid the extra cost entailed by the increased PCN in the absence of antibiotics.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Pasteurella multocida/efectos de los fármacos , Pasteurella multocida/genética , Ampicilina/farmacología , Animales , Farmacorresistencia Bacteriana/efectos de los fármacos , Haemophilus influenzae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Infecciones por Pasteurella/microbiología , Infecciones por Pasteurella/veterinaria , Pasteurella multocida/aislamiento & purificación , Plásmidos/efectos de los fármacos , Polimorfismo de Nucleótido Simple , Porcinos
13.
Antimicrob Agents Chemother ; 59(6): 3335-41, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25824216

RESUMEN

Plasmids play a key role in the horizontal spread of antibiotic resistance determinants among bacterial pathogens. When an antibiotic resistance plasmid arrives in a new bacterial host, it produces a fitness cost, causing a competitive disadvantage for the plasmid-bearing bacterium in the absence of antibiotics. On the other hand, in the presence of antibiotics, the plasmid promotes the survival of the clone. The adaptations experienced by plasmid and bacterium in the presence of antibiotics during the first generations of coexistence will be crucial for the progress of the infection and the maintenance of plasmid-mediated resistance once the treatment is over. Here we developed a model system using the human pathogen Haemophilus influenzae carrying the small plasmid pB1000 conferring resistance to ß-lactam antibiotics to investigate host and plasmid adaptations in the course of a simulated ampicillin therapy. Our results proved that plasmid-bearing clones compensated for the fitness disadvantage during the first 100 generations of plasmid-host adaptation. In addition, ampicillin treatment was associated with an increase in pB1000 copy number. The augmentation in both bacterial fitness and plasmid copy number gave rise to H. influenzae populations with higher ampicillin resistance levels. In conclusion, we show here that the modulations in bacterial fitness and plasmid copy number help a plasmid-bearing bacterium to adapt during antibiotic therapy, promoting both the survival of the host and the spread of the plasmid.


Asunto(s)
Antibacterianos/farmacología , Plásmidos/genética , Variaciones en el Número de Copia de ADN/genética , Farmacorresistencia Microbiana/genética , Haemophilus influenzae/efectos de los fármacos , Haemophilus influenzae/genética , Haemophilus influenzae/fisiología
14.
J Antimicrob Chemother ; 70(11): 3000-3, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26209313

RESUMEN

BACKGROUND: Carbapenemases are a major concern for the treatment of infectious diseases caused by Gram-negative bacteria. Although plasmids are responsible for the spread of resistance genes among these pathogens, there is limited information on the nature of the mobile genetic elements carrying carbapenemases in Pseudomonas aeruginosa. METHODS: We combined data from two different next-generation sequencing platforms, Illumina HiSeq2000 and PacBio RSII, to obtain the complete nucleotide sequences of two blaVIM-1-carrying plasmids (pAMBL1 and pAMBL2) isolated from P. aeruginosa clinical isolates. RESULTS: Plasmid pAMBL1 has 26 440 bp and carries a RepA_C family replication protein. pAMBL1 is similar to plasmids pNOR-2000 and pKLC102 from P. aeruginosa and pAX22 from Achromobacter xylosoxidans, which also carry VIM-type carbapenemases. pAMBL2 is a 24 133 bp plasmid with a replication protein that belongs to the Rep_3 family. It shows a high degree of homology with a fragment of the blaVIM-1-bearing plasmid pPC9 from Pseudomonas putida. Plasmid pAMBL2 carries three copies of the blaVIM-1 cassette in an In70 class 1 integron conferring, unlike pAMBL1, high-level resistance to carbapenems. CONCLUSIONS: We present two new plasmids coding for VIM-1 carbapenemase from P. aeruginosa and report that the presence of three copies of blaVIM-1 in pAMBL2 produces high-level resistance to carbapenems.


Asunto(s)
Antibacterianos/farmacología , Carbapenémicos/farmacología , Plásmidos , Pseudomonas aeruginosa/efectos de los fármacos , Resistencia betalactámica , Achromobacter denitrificans/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Dosificación de Gen , Humanos , Datos de Secuencia Molecular , Pseudomonas aeruginosa/genética , Pseudomonas putida/genética , Análisis de Secuencia de ADN , Homología de Secuencia , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
15.
Nat Commun ; 15(1): 2610, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521779

RESUMEN

The rise of antibiotic resistance is a critical public health concern, requiring an understanding of mechanisms that enable bacteria to tolerate antimicrobial agents. Bacteria use diverse strategies, including the amplification of drug-resistance genes. In this paper, we showed that multicopy plasmids, often carrying antibiotic resistance genes in clinical bacteria, can rapidly amplify genes, leading to plasmid-mediated phenotypic noise and transient antibiotic resistance. By combining stochastic simulations of a computational model with high-throughput single-cell measurements of blaTEM-1 expression in Escherichia coli MG1655, we showed that plasmid copy number variability stably maintains populations composed of cells with both low and high plasmid copy numbers. This diversity in plasmid copy number enhances the probability of bacterial survival in the presence of antibiotics, while also rapidly reducing the burden of carrying multiple plasmids in drug-free environments. Our results further support the tenet that multicopy plasmids not only act as vehicles for the horizontal transfer of genetic information between cells but also as drivers of bacterial adaptation, enabling rapid modulation of gene copy numbers. Understanding the role of multicopy plasmids in antibiotic resistance is critical, and our study provides insights into how bacteria can transiently survive lethal concentrations of antibiotics.


Asunto(s)
Antibacterianos , Escherichia coli , Plásmidos/genética , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Escherichia coli/genética , Dosificación de Gen , Farmacorresistencia Bacteriana/genética
16.
bioRxiv ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38903098

RESUMEN

Plasmids are extrachromosomal genetic elements commonly found in bacteria. Plasmids are known to fuel bacterial evolution through horizontal gene transfer (HGT), but recent analyses indicate that they can also promote intragenomic adaptations. However, the role of plasmids as catalysts of bacterial evolution beyond HGT remains poorly explored. In this study, we investigate the impact of a widespread conjugative plasmid, pOXA-48, on the evolution of various multidrug-resistant clinical enterobacteria. Combining experimental and within-patient evolution analyses, we unveil that plasmid pOXA-48 promotes bacterial evolution through the transposition of plasmid-encoded insertion sequence 1 (IS1) elements. Specifically, IS1-mediated gene inactivations expedite the adaptation rate of clinical strains in vitro and foster within-patient adaptation in the gut microbiota. We decipher the mechanism underlying the plasmid-mediated surge in IS1 transposition, revealing a negative feedback loop regulated by the genomic copy number of IS1. Given the overrepresentation of IS elements in bacterial plasmids, our findings propose that plasmid-mediated IS transposition represents a crucial mechanism for swift bacterial adaptation.

17.
Nat Commun ; 15(1): 4731, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830889

RESUMEN

Major antibiotic groups are losing effectiveness due to the uncontrollable spread of antimicrobial resistance (AMR) genes. Among these, ß-lactam resistance genes -encoding ß-lactamases- stand as the most common resistance mechanism in Enterobacterales due to their frequent association with mobile genetic elements. In this context, novel approaches that counter mobile AMR are urgently needed. Collateral sensitivity (CS) occurs when the acquisition of resistance to one antibiotic increases susceptibility to another antibiotic and can be exploited to eliminate AMR selectively. However, most CS networks described so far emerge as a consequence of chromosomal mutations and cannot be leveraged to tackle mobile AMR. Here, we dissect the CS response elicited by the acquisition of a prevalent antibiotic resistance plasmid to reveal that the expression of the ß-lactamase gene blaOXA-48 induces CS to colistin and azithromycin. We next show that other clinically relevant mobile ß-lactamases produce similar CS responses in multiple, phylogenetically unrelated E. coli strains. Finally, by combining experiments with surveillance data comprising thousands of antibiotic susceptibility tests, we show that ß-lactamase-induced CS is pervasive within Enterobacterales. These results highlight that the physiological side-effects of ß-lactamases can be leveraged therapeutically, paving the way for the rational design of specific therapies to block mobile AMR or at least counteract their effects.


Asunto(s)
Antibacterianos , Escherichia coli , Pruebas de Sensibilidad Microbiana , beta-Lactamasas , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Sensibilidad Colateral al uso de Fármacos/genética , Plásmidos/genética , Azitromicina/farmacología , Colistina/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Resistencia betalactámica/genética
18.
Antimicrob Agents Chemother ; 57(7): 3430-3, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23650171

RESUMEN

Streptococcus suis is an emerging zoonotic agent responsible for high-mortality outbreaks among the human population in China. In this species, the ABC transporter SatAB mediates fluoroquinolone resistance when overexpressed. Here, we describe and characterize satR, an open reading frame (ORF) encoding a MarR superfamily regulator that acts as a repressor of satAB. satR is cotranscribed with satAB, and its interruption entails the overexpression of the pump, leading to a clinically relevant increase in resistance to fluoroquinolones.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Fluoroquinolonas/farmacología , Proteínas Represoras/genética , Streptococcus suis/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Fluoroquinolonas/metabolismo , Regulación Bacteriana de la Expresión Génica , Pruebas de Sensibilidad Microbiana , Mutación , Sistemas de Lectura Abierta , Operón , Proteínas Represoras/metabolismo , Análisis de Secuencia de ADN , Streptococcus suis/efectos de los fármacos , Streptococcus suis/enzimología , Transcripción Genética
19.
Biology (Basel) ; 12(5)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37237454

RESUMEN

Epistasis refers to the way in which genetic interactions between some genetic loci affect phenotypes and fitness. In this study, we propose the concept of "structural epistasis" to emphasize the role of the variable physical interactions between molecules located in particular spaces inside the bacterial cell in the emergence of novel phenotypes. The architecture of the bacterial cell (typically Gram-negative), which consists of concentrical layers of membranes, particles, and molecules with differing configurations and densities (from the outer membrane to the nucleoid) determines and is in turn determined by the cell shape and size, depending on the growth phases, exposure to toxic conditions, stress responses, and the bacterial environment. Antibiotics change the bacterial cell's internal molecular topology, producing unexpected interactions among molecules. In contrast, changes in shape and size may alter antibiotic action. The mechanisms of antibiotic resistance (and their vectors, as mobile genetic elements) also influence molecular connectivity in the bacterial cell and can produce unexpected phenotypes, influencing the action of other antimicrobial agents.

20.
Antimicrob Agents Chemother ; 56(9): 4958-60, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22733069

RESUMEN

TEM-1 is the dominant ß-lactamase of Haemophilus influenzae and can be located on small plasmids. Three distinct plasmids with sizes from 4,304 to 5,646 nucleotides (nt) were characterized: pA1606, pA1209, and pPN223. In addition to TEM-1 and a replication enzyme of the Rep 3 superfamily, pA1606 carries a Tn3 resolvase gene and pA1606 and pA1209 carry an open reading frame (ORF) similar to a plasmid recombination enzyme gene described in Gram-positive bacteria. The plasmids transformed strain Rd to the ampicillin-resistant phenotype.


Asunto(s)
Haemophilus influenzae/genética , Plásmidos , Resistencia betalactámica/genética , beta-Lactamasas/genética , Ampicilina/farmacología , Secuencia de Bases , Haemophilus influenzae/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , ARN Polimerasa Dependiente del ARN/genética , Recombinasas/genética , Transformación Bacteriana , Resolvasas de Transposones/genética , beta-Lactamas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA