Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(8): e2303119121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38349880

RESUMEN

Coupling red blood cell (RBC) supply to O2 demand is an intricate process requiring O2 sensing, generation of a stimulus, and signal transduction that alters upstream arteriolar tone. Although actively debated, this process has been theorized to be induced by hypoxia and to involve activation of endothelial inwardly rectifying K+ channels (KIR) 2.1 by elevated extracellular K+ to trigger conducted hyperpolarization via connexin40 (Cx40) gap junctions to upstream resistors. This concept was tested in resting healthy skeletal muscle of Cx40-/- and endothelial KIR2.1-/- mice using state-of-the-art live animal imaging where the local tissue O2 environment was manipulated using a custom gas chamber. Second-by-second capillary RBC flow responses were recorded as O2 was altered. A stepwise drop in PO2 at the muscle surface increased RBC supply in capillaries of control animals while elevated O2 elicited the opposite response; capillaries were confirmed to express Cx40. The RBC flow responses were rapid and tightly coupled to O2; computer simulations did not support hypoxia as a driving factor. In contrast, RBC flow responses were significantly diminished in Cx40-/- mice. Endothelial KIR2.1-/- mice, on the other hand, reacted normally to O2 changes, even when the O2 challenge was targeted to a smaller area of tissue with fewer capillaries. Conclusively, microvascular O2 responses depend on coordinated electrical signaling via Cx40 gap junctions, and endothelial KIR2.1 channels do not initiate the event. These findings reconceptualize the paradigm of blood flow regulation in skeletal muscle and how O2 triggers this process in capillaries independent of extracellular K+.


Asunto(s)
Capilares , Oxígeno , Animales , Ratones , Capilares/fisiología , Proteína alfa-5 de Unión Comunicante/metabolismo , Uniones Comunicantes/metabolismo , Hipoxia/metabolismo , Músculo Esquelético/metabolismo , Oxígeno/metabolismo
2.
Microcirculation ; 31(1): e12837, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37985248

RESUMEN

OBJECTIVE: This study investigated the actions of advanced glycated end-products (AGE), their receptors (RAGE), and NAD(P)H oxidase (Nox) subtypes 1, 2, and 4 on mechanisms of endothelium-dependent dilation of the rat cremaster muscle artery (CMA). METHODS: Immunofluorescence studies were used to examine expression of RAGE in rat arteries. ROS accumulation was measured using luminescence and fluorescence assays. Functional studies were performed using pressure myography. RESULTS: High levels of RAGE expression were shown in the endothelial cells of the CMA, compared with low endothelial expression in middle cerebral and mesenteric arteries and the aorta. Exogenous AGE (in vitro glycated bovine serum albumin) stimulated H2O2 accumulation in CMA, which was prevented by the RAGE antagonist FPS-ZM1, the NAD(P)H oxidase (Nox) inhibitor apocynin and inhibited by the Nox1/4 inhibitor setanaxib, but not the Nox2 inhibitor GSK2795039. In functional studies, AGE inhibited vasodilation of CMA stimulated by acetylcholine, sodium nitroprusside, and the BKCa activator NS1619, but not adenosine-induced dilation. FPS-ZM1, apocynin, and setanaxib prevented the inhibitory effects of AGE on responses to acetylcholine and NS-1619. CONCLUSION: These observations suggest RAGE are constitutively expressed in the endothelium of the rat CMA and may be activated by AGE to stimulate Nox1/4 and ROS formation with resulting inhibition of NO and BKCa-mediated endothelium-dependent dilation.


Asunto(s)
Acetofenonas , Benzamidas , Células Endoteliales , Endotelio Vascular , NADPH Oxidasa 1 , NADPH Oxidasa 4 , Animales , Ratas , Acetilcolina/metabolismo , Benzamidas/administración & dosificación , Dilatación , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Arterias Mesentéricas/metabolismo , Músculo Esquelético/metabolismo , NADPH Oxidasas , Especies Reactivas de Oxígeno/metabolismo , Vasodilatación , NADPH Oxidasa 4/metabolismo , NADPH Oxidasa 1/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 40(3): 733-750, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31826653

RESUMEN

OBJECTIVE: Cerebral arterial networks match blood flow delivery with neural activity. Neurovascular response begins with a stimulus and a focal change in vessel diameter, which by themselves is inconsequential to blood flow magnitude, until they spread and alter the contractile status of neighboring arterial segments. We sought to define the mechanisms underlying integrated vascular behavior and considered the role of intercellular electrical signaling in this phenomenon. Approach and Results: Electron microscopic and histochemical analysis revealed the structural coupling of cerebrovascular cells and the expression of gap junctional subunits at the cell interfaces, enabling intercellular signaling among vascular cells. Indeed, robust vasomotor conduction was detected in human and mice cerebral arteries after focal vessel stimulation: a response attributed to endothelial gap junctional communication, as its genetic alteration attenuated this behavior. Conducted responses were observed to ascend from the penetrating arterioles, influencing the contractile status of cortical surface vessels, in a simulated model of cerebral arterial network. Ascending responses recognized in vivo after whisker stimulation were significantly attenuated in mice with altered endothelial gap junctional signaling confirming that gap junctional communication drives integrated vessel responses. The diminishment in vascular communication also impaired the critical ability of the cerebral vasculature to maintain blood flow homeostasis and hence tissue viability after stroke. CONCLUSIONS: Our findings highlight the integral role of intercellular electrical signaling in transcribing focal stimuli into coordinated changes in cerebrovascular contractile activity and expose, a hitherto unknown mechanism for flow regulation after stroke.


Asunto(s)
Isquemia Encefálica/fisiopatología , Comunicación Celular , Circulación Cerebrovascular , Células Endoteliales , Uniones Comunicantes , Arteria Cerebral Media/inervación , Acoplamiento Neurovascular , Accidente Cerebrovascular/fisiopatología , Adulto , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Simulación por Computador , Conexinas/genética , Conexinas/metabolismo , Modelos Animales de Enfermedad , Conductividad Eléctrica , Células Endoteliales/metabolismo , Células Endoteliales/ultraestructura , Femenino , Uniones Comunicantes/metabolismo , Uniones Comunicantes/ultraestructura , Homeostasis , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Arteria Cerebral Media/metabolismo , Arteria Cerebral Media/ultraestructura , Modelos Cardiovasculares , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Proteína alfa-5 de Unión Comunicante
4.
Arterioscler Thromb Vasc Biol ; 39(6): 1072-1087, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31043073

RESUMEN

Objective- Inward rectifying K+ (KIR) channels are present in cerebral arterial smooth muscle and endothelial cells, a tandem arrangement suggestive of a dynamic yet undiscovered role for this channel. This study defined whether distinct pools of cerebral arterial KIR channels were uniquely modulated by membrane lipids and hemodynamic stimuli. Approach and Results- A Ba2+-sensitive KIR current was isolated in smooth muscle and endothelial cells of rat cerebral arteries; molecular analyses subsequently confirmed KIR2.1/KIR2.2 mRNA and protein expression in both cells. Patch-clamp electrophysiology next demonstrated that each population of KIR channels was sensitive to key membrane lipids and hemodynamic stimuli. In this regard, endothelial KIR was sensitive to phosphatidylinositol 4,5-bisphosphate content, with depletion impairing the ability of laminar shear stress to activate this channel pool. In contrast, smooth muscle KIR was sensitive to membrane cholesterol content, with sequestration blocking the ability of pressure to inhibit channel activity. The idea that membrane lipids help confer shear stress and pressure sensitivity of KIR channels was confirmed in intact arteries using myography. Virtual models integrating structural/electrical observations reconceptualized KIR as a dynamic regulator of membrane potential working in concert with other currents to set basal tone across a range of shear stresses and intravascular pressures. Conclusions- The data show for the first time that specific membrane lipid-KIR interactions enable unique channel populations to sense hemodynamic stimuli and drive vasomotor responses to set basal perfusion in the cerebral circulation.


Asunto(s)
Arterias Cerebrales/metabolismo , Circulación Cerebrovascular/fisiología , Células Endoteliales/metabolismo , Lípidos de la Membrana/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , ARN Mensajero/genética , Animales , Comunicación Celular/fisiología , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Hemodinámica/fisiología , Potenciales de la Membrana , Modelos Animales , Ratas , Ratas Sprague-Dawley , Valores de Referencia
5.
Microcirculation ; 23(1): 15-32, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26541094

RESUMEN

Myocardial perfusion and coronary vascular resistance are regulated by signaling metabolites released from the local myocardium that act either directly on the VSMC or indirectly via stimulation of the endothelium. A prominent mechanism of vasodilation is EDH of the arteriolar smooth muscle, with EETs and H(2)O(2) playing important roles in EDH in the coronary microcirculation. In some cases, EETs and H(2)O(2) are released as transferable hyperpolarizing factors (EDHFs) that act directly on the VSMCs. By contrast, EETs and H(2)O(2) can also promote endothelial KCa activity secondary to the amplification of extracellular Ca(2+) influx and Ca(2+) mobilization from intracellular stores, respectively. The resulting endothelial hyperpolarization may subsequently conduct to the media via myoendothelial gap junctions or potentially lead to the release of a chemically distinct factor(s). Furthermore, in human isolated coronary arterioles dilator signaling involving EETs and H(2)O(2) may be integrated, being either complimentary or inhibitory depending on the stimulus. With an emphasis on the human coronary microcirculation, this review addresses the diverse and integrated mechanisms by which EETs and H(2)O(2) regulate vessel tone and also examines the hypothesis that myoendothelial microdomain signaling facilitates EDH activity in the human heart.


Asunto(s)
Vasos Coronarios/metabolismo , Eicosanoides/metabolismo , Endotelio Vascular/metabolismo , Uniones Comunicantes/metabolismo , Peróxido de Hidrógeno/metabolismo , Músculo Liso Vascular/metabolismo , Miocardio/metabolismo , Vasodilatación/fisiología , Animales , Señalización del Calcio/fisiología , Humanos
6.
Adv Exp Med Biol ; 891: 201-11, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27379647

RESUMEN

Changes in diet are a challenge to the gastrointestinal tract which needs to alter its processing mechanisms to continue to process nutrients and maintain health. In particular, the enteric nervous system (ENS) needs to adapt its motor and secretory programs to deal with changes in nutrient type and load in order to optimise nutrient absorption.The nerve circuits in the gut are complex, and the numbers and types of neurons make recordings of specific cell types difficult, time-consuming, and prone to sampling errors. Nonetheless, traditional research methods like intracellular electrophysiological approaches have provided the basis for our understanding of the ENS circuitry. In particular, animal models of intestinal inflammation have shown us that we can document changes to neuronal excitability and synaptic transmission.Recent studies examining diet-induced changes to ENS programming have opted to use fast imaging techniques to reveal changes in neuron function. Advances in imaging techniques using voltage- or calcium-sensitive dyes to record neuronal activity promise to overcome many limitations inherent to electrophysiological approaches. Imaging techniques allow access to a wide range of ENS phenotypes and to the changes they undergo during dietary challenges. These sorts of studies have shown that dietary variation or obesity can change how the ENS processes information-in effect reprogramming the ENS. In this review, the data gathered from intracellular recordings will be compared with measurements made using imaging techniques in an effort to determine if the lessons learnt from inflammatory changes are relevant to the understanding of diet-induced reprogramming.


Asunto(s)
Dieta , Sistema Nervioso Entérico/fisiología , Tracto Gastrointestinal/inervación , Neuronas/fisiología , Transmisión Sináptica/fisiología , Animales
7.
FASEB J ; 28(1): 275-87, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24036884

RESUMEN

Relaxin is a potent vasodilator of small resistance arteries and modifies arterial compliance in some systemic vascular beds, yet receptors for relaxin, such as RXFP1, have only been localized to vascular smooth muscle. This study first aimed to localize RXFP1 in rat arteries and veins from different organ beds and determine whether receptors are present in endothelial cells. We then tested the hypothesis that region-specific vascular effects of relaxin may be influenced by the cellular localization of RXFP1 within different blood vessels. The aorta, vena cava, mesenteric artery, and vein had significantly higher (P<0.05) RXFP1 immunostaining in endothelial cells compared with vascular smooth muscle, whereas the femoral artery and vein and small pulmonary arteries had higher (P<0.01) RXFP1 immunostaining in the vascular smooth muscle. Male rats were treated subcutaneously with recombinant human relaxin-2 (serelaxin; 4 µg/h) for 5 d; vasodilation and compliance in mesenteric and femoral arteries and veins were compared with placebo controls. Serelaxin significantly (P=0.04) reduced wall stiffness and increased volume compliance in mesenteric arteries but not in the other vessels examined. This was associated with changes in geometrical properties, and not compositional changes in the extracellular matrix. Serelaxin treatment had no effect on acetylcholine-mediated relaxation but significantly (P<0.001) enhanced bradykinin (BK)-mediated relaxation in mesenteric arteries, involving enhanced nitric oxide but not endothelium-derived hyperpolarization or vasodilatory prostanoids. In conclusion, there is differential distribution of RXFP1 on endothelial and smooth muscle across the vasculature. In rats, mesenteric arteries exhibit the greatest functional response to chronic serelaxin treatment.


Asunto(s)
Arterias/efectos de los fármacos , Arterias/metabolismo , Bradiquinina/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Relaxina/farmacología , Venas/efectos de los fármacos , Venas/metabolismo , Animales , Endotelio Vascular/efectos de los fármacos , Humanos , Técnicas In Vitro , Masculino , Músculo Liso Vascular/efectos de los fármacos , Ratas , Ratas Wistar
8.
J Physiol ; 592(15): 3243-55, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24907303

RESUMEN

Dysfunctional electrical signalling within the arteriolar wall is a major cause of cardiovascular disease. The endothelial cell layer constitutes the primary electrical pathway, co-ordinating contraction of the overlying smooth muscle cell (SMC) layer. As myoendothelial gap junctions (MEGJs) provide direct contact between the cell layers, proper vasomotor responses are thought to depend on a high, uniform MEGJ density. However, MEGJs are observed to be expressed heterogeneously within and among vascular beds. This discrepancy is addressed in the present study. As no direct measures of MEGJ conductance exist, we employed a computational modelling approach to vary the number, conductance and distribution of MEGJs. Our simulations demonstrate that a minimal number of randomly distributed MEGJs augment arteriolar cell-cell communication by increasing conduction efficiency and ensuring appropriate membrane potential responses in SMCs. We show that electrical coupling between SMCs must be tailored to the particular MEGJ distribution. Finally, observation of non-decaying mechanical conduction in arterioles without regeneration has been a long-standing controversy in the microvascular field. As heterogeneous MEGJ distributions provide for different conduction profiles along the cell layers, we demonstrate that a non-decaying conduction profile is possible in the SMC layer of a vessel with passive electrical properties. These intriguing findings redefine the concept of efficient electrical communication in the microcirculation, illustrating how heterogeneous properties, ubiquitous in biological systems, may have a profound impact on system behaviour and how acute local and global flow control is explained from the biophysical foundations.


Asunto(s)
Arteriolas/fisiología , Comunicación Celular , Células Endoteliales/fisiología , Uniones Comunicantes/fisiología , Miocitos del Músculo Liso/fisiología , Animales , Arteriolas/citología , Conexinas/genética , Conexinas/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/fisiología , Uniones Comunicantes/metabolismo , Potenciales de la Membrana , Modelos Cardiovasculares , Miocitos del Músculo Liso/metabolismo , Ratas
9.
Pflugers Arch ; 466(3): 389-405, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23748495

RESUMEN

Endothelium-derived epoxyeicosatrienoic acids (EETs) are fatty acid epoxides that play an important role in the control of vascular tone in selected coronary, renal, carotid, cerebral and skeletal muscle arteries. Vasodilation due to endothelium-dependent smooth muscle hyperpolarization (EDH) has been suggested to involve EETs as a transferable endothelium-derived hyperpolarizing factor. However, this activity may also be due to EETs interacting with the components of other primary EDH-mediated vasodilator mechanisms. Indeed, the transfer of hyperpolarization initiated in the endothelium to the adjacent smooth muscle via gap junction connexins occurs separately or synergistically with the release of K(+) ions at discrete myoendothelial microdomain signalling sites. The net effects of such activity are smooth muscle hyperpolarization, closure of voltage-dependent Ca(2+) channels, phospholipase C deactivation and vasodilation. The spatially localized and key components of the microdomain signalling complex are the inositol 1,4,5-trisphosphate receptor-mediated endoplasmic reticulum Ca(2+) store, Ca(2+)-activated K(+) (KCa), transient receptor potential (TRP) and inward-rectifying K(+) channels, gap junctions and the smooth muscle Na(+)/K(+)-ATPase. Of these, TRP channels and connexins are key endothelial effector targets modulated by EETs. In an integrated manner, endogenous EETs enhance extracellular Ca(2+) influx (thereby amplifying and prolonging KCa-mediated endothelial hyperpolarization) and also facilitate the conduction of this hyperpolarization to spatially remote vessel regions. The contribution of EETs and the receptor and channel subtypes involved in EDH-related microdomain signalling, as a candidate for a universal EDH-mediated vasodilator mechanism, vary with vascular bed, species, development and disease and thus represent potentially selective targets for modulating specific artery function.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/metabolismo , Endotelio Vascular/metabolismo , Uniones Comunicantes/metabolismo , Músculo Liso Vascular/metabolismo , Transducción de Señal , Vasodilatación , Animales , Endotelio Vascular/fisiología , Humanos , Potenciales de la Membrana , Canales de Potasio Calcio-Activados/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo
10.
Pflugers Arch ; 466(4): 767-79, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24482062

RESUMEN

Low-voltage-activated T-type calcium channels play an important role in regulating cellular excitability and are implicated in conditions, such as epilepsy and neuropathic pain. T-type channels, especially Cav3.1 and Cav3.2, are also expressed in the vasculature, although patch clamp studies of isolated vascular smooth muscle cells have in general failed to demonstrate these low-voltage-activated calcium currents. By contrast, the channels which are blocked by T-type channel antagonists are high-voltage activated but distinguishable from their L-type counterparts by their T-type biophysical properties and small negative shifts in activation and inactivation voltages. These changes in T-channel properties may result from vascular-specific expression of splice variants of Cav3 genes, particularly in exon 25/26 of the III-IV linker region. Recent physiological studies suggest that T-type channels make a small contribution to vascular tone at low intraluminal pressures, although the relevance of this contribution is unclear. By contrast, these channels play a larger role in vascular tone of small arterioles, which would be expected to function at lower intra-vascular pressures. Upregulation of T-type channel function following decrease in nitric oxide bioavailability and increase in oxidative stress, which occurs during cardiovascular disease, suggests that a more important role could be played by these channels in pathophysiological situations. The ability of T-type channels to be rapidly recruited to the plasma membrane, coupled with their subtype-specific localisation in signalling microdomains where they could modulate the function of calcium-dependent ion channels and pathways, provides a mechanism for rapid up- and downregulation of vasoconstriction. Future investigation into the molecules which govern these changes may illuminate novel targets for the treatment of conditions such as therapy-resistant hypertension and vasospasm.


Asunto(s)
Canales de Calcio Tipo T/fisiología , Músculo Liso Vascular/fisiología , Vasoconstricción/fisiología , Vasodilatación/fisiología , Secuencia de Aminoácidos , Animales , Humanos , Potenciales de la Membrana/fisiología , Datos de Secuencia Molecular , Isoformas de Proteínas/fisiología
11.
J Physiol ; 591(8): 2157-73, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23440962

RESUMEN

Regulation of blood flow in microcirculatory networks depends on spread of local vasodilatation to encompass upstream arteries; a process mediated by endothelial conduction of hyperpolarization. Given that endothelial coupling is reduced in hypertension, we used hypertensive Cx40ko mice, in which endothelial coupling is attenuated, to investigate the contribution of the renin-angiotensin system and reduced endothelial cell coupling to conducted vasodilatation of cremaster arterioles in vivo. When the endothelium was disrupted by light dye treatment, conducted vasodilatation, following ionophoresis of acetylcholine, was abolished beyond the site of endothelial damage. In the absence of Cx40, sparse immunohistochemical staining was found for Cx37 in the endothelium, and endothelial, myoendothelial and smooth muscle gap junctions were identified by electron microscopy. Hyperpolarization decayed more rapidly in arterioles from Cx40ko than wild-type mice. This was accompanied by a shift in the threshold potential defining the linear relationship between voltage and diameter, increased T-type calcium channel expression and increased contribution of T-type (3 µmol l(-1) NNC 55-0396), relative to L-type (1 µmol l(-1) nifedipine), channels to vascular tone. The change in electromechanical coupling was reversed by inhibition of the renin-angiotensin system (candesartan, 1.0 mg kg(-1) day(-1) for 2 weeks) or by acute treatment with the superoxide scavenger tempol (1 mmol l(-1)). Candesartan and tempol treatments also significantly improved conducted vasodilatation. We conclude that conducted vasodilatation in Cx40ko mice requires the endothelium, and attenuation results from both a reduction in endothelial coupling and an angiotensin II-induced increase in oxidative stress. We suggest that during cardiovascular disease, the ability of microvascular networks to maintain tissue integrity may be compromised due to oxidative stress-induced changes in electromechanical coupling.


Asunto(s)
Endotelio Vascular/fisiopatología , Hipertensión/fisiopatología , Estrés Oxidativo , Angiotensina II/fisiología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Arteriolas/fisiología , Bencimidazoles/farmacología , Compuestos de Bifenilo , Canales de Calcio Tipo L/fisiología , Canales de Calcio Tipo T/fisiología , Conexinas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microcirculación , Modelos Cardiovasculares , Renina/sangre , Tetrazoles/farmacología , Vasodilatación , Proteína alfa-5 de Unión Comunicante
12.
Histochem Cell Biol ; 139(2): 309-21, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23007290

RESUMEN

Diet-induced obesity induces changes in mechanisms that are essential for the regulation of normal artery function, and in particular the function of the vascular endothelium. Using a rodent model that reflects the characteristics of human dietary obesity, in the rat saphenous artery we have previously demonstrated that endothelium-dependent vasodilation shifts from an entirely nitric oxide (NO)-mediated mechanism to one involving upregulation of myoendothelial gap junctions and intermediate conductance calcium-activated potassium channel activity and expression. This study investigates the changes in NO-mediated mechanisms that accompany this shift. In saphenous arteries from controls fed a normal chow diet, acetylcholine-mediated endothelium-dependent vasodilation was blocked by NO synthase and soluble guanylyl cyclase inhibitors, but in equivalent arteries from obese animals sensitivity to these agents was reduced. The expression of endothelial NO synthase (eNOS) and caveolin-3 in rat saphenous arteries was unaffected by obesity, whilst that of caveolin-1 monomer and large oligomeric complexes of caveolins-1 and -2 were increased in membrane-enriched samples. The density of caveolae was increased at the membrane and cytoplasm of endothelial and smooth muscle cells of saphenous arteries from obese rats. Dissociation of eNOS from caveolin-1, as a prerequisite for activation of the enzyme, may be compromised and thereby impair NO-mediated vasodilation in the saphenous artery from diet-induced obese rats. Such altered signaling mechanisms in obesity-related vascular disease represent significant potential targets for therapeutic intervention.


Asunto(s)
Caveolas/metabolismo , Caveolina 1/biosíntesis , Dieta Alta en Grasa/efectos adversos , Óxido Nítrico/metabolismo , Obesidad/metabolismo , Vasodilatación , Animales , Caveolina 1/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
13.
Am J Physiol Regul Integr Comp Physiol ; 305(8): R917-26, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23948776

RESUMEN

In pregnancy, α-adrenoceptor-mediated vasoconstriction is augmented in uterine radial arteries and is accompanied by underlying changes in smooth muscle (SM) Ca(2+) activity. This study aims to determine the Ca(2+) entry channels associated with altered vasoconstriction in pregnancy, with the hypothesis that augmented vasoconstriction involves transient receptor potential canonical type-3 (TRPC3) and L- and T-type voltage-dependent Ca(2+) channels. Immunohistochemistry showed TRPC3, L-type Cav1.2 (as the α1C subunit), T-type Cav3.1 (α1G), and Cav3.2 (α1H) localization to the uterine radial artery SM. Fluorescence intensity of TRPC3, Cav1.2, and Cav3.2 was increased, and Cav3.1 decreased in radial artery SM from pregnant rats. Western blot analysis confirmed increased TRPC3 protein expression in the radial artery from pregnant rats. Pressure myography incorporating pharmacological intervention to examine the role of these channels in uterine radial arteries showed an attenuation of phenylephrine (PE)-induced constriction with Pyr3 {1-[4-[(2,3,3-trichloro-1-oxo-2-propen-1-yl)amino]phenyl]-5-(trifluoromethyl)-1H-pyrazole-4-carboxylic acid}-mediated TRPC3 inhibition or with nifedipine-mediated L-type channel block alone in vessels from pregnant rats; both effects of which were diminished in radial arteries from nonpregnant rats. Combined TRPC3 and L-type inhibition attenuated PE-induced constriction in radial arteries, and the residual vasoconstriction was reduced and abolished with T-type channel block with NNC 55-0396 in arteries from nonpregnant and pregnant rats, respectively. With SM Ca(2+) stores depleted and in the presence of PE, nifedipine, and NNC 55-0396, blockade of TRPC3 reversed PE-induced constriction. These data suggest that TRPC3 channels act synergistically with L- and T-type channels to modulate radial artery vasoconstriction, with the mechanism being augmented in pregnancy.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo T/metabolismo , Contracción Muscular/fisiología , Canales Catiónicos TRPC/metabolismo , Arteria Uterina/metabolismo , Vasoconstricción/fisiología , Animales , Bloqueadores de los Canales de Calcio/farmacología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Femenino , Contracción Muscular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Miografía , Nifedipino/farmacología , Fenilefrina/farmacología , Embarazo , Pirazoles/farmacología , Ratas , Ratas Sprague-Dawley , Arteria Uterina/efectos de los fármacos , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología
14.
J Anat ; 223(6): 677-86, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24128141

RESUMEN

In pregnancy, the vasculature of the uterus undergoes rapid remodelling to increase blood flow and maintain perfusion to the fetus. The present study determines the distribution and density of caveolae, transient receptor potential vanilloid type 4 channels (TRPV4) and myoendothelial gap junctions, and the relative contribution of related endothelium-dependent vasodilator components in uterine radial arteries of control virgin non-pregnant and 20-day late-pregnant rats. The hypothesis examined is that specific components of endothelium-dependent vasodilator mechanisms are altered in pregnancy-related uterine radial artery remodelling. Conventional and serial section electron microscopy were used to determine the morphological characteristics of uterine radial arteries from control and pregnant rats. TRPV4 distribution and expression was examined using conventional confocal immunohistochemistry, and the contribution of endothelial TRPV4, nitric oxide (NO) and endothelium-derived hyperpolarization (EDH)-type activity determined using pressure myography with pharmacological intervention. Data show outward hypertrophic remodelling occurs in uterine radial arteries in pregnancy. Further, caveolae density in radial artery endothelium and smooth muscle from pregnant rats was significantly increased by ~94% and ~31%, respectively, compared with control, whereas caveolae density did not differ in endothelium compared with smooth muscle from control. Caveolae density was significantly higher by ~59% on the abluminal compared with the luminal surface of the endothelium in uterine radial artery of pregnant rats but did not differ at those surfaces in control. TRPV4 was present in endothelium and smooth muscle, but not associated with internal elastic lamina hole sites in radial arteries. TRPV4 fluorescence intensity was significantly increased in the endothelium and smooth muscle of radial artery of pregnant compared with control rats by ~2.6- and 5.5-fold, respectively. The TRPV4 signal was significantly higher in the endothelium compared with the smooth muscle in radial artery of both control and pregnant rats, by ~5.7- and 2.7-fold, respectively. Myoendothelial gap junction density was significantly decreased by ~37% in radial artery from pregnant compared with control rats. Pressure myography with pharmacological intervention showed that NO contributes ~80% and ~30%, and the EDH-type component ~20% and ~70% of the total endothelium-dependent vasodilator response in radial arteries of control and pregnant rats, respectively. TRPV4 plays a functional role in radial arteries, with a greater contribution in those from pregnant rats. The correlative association of increased TRPV4 and caveolae density and role of EDH-type activity in uterine radial artery of pregnant rats is suggestive of their causal relationship. The decreased myoendothelial gap junction density and lack of TRPV4 density at such sites is consistent with their having an integral, albeit complex, interactive role in uterine vascular signalling and remodelling in pregnancy.


Asunto(s)
Caveolas/ultraestructura , Uniones Comunicantes/ultraestructura , Arteria Radial/ultraestructura , Canales Catiónicos TRPV/fisiología , Arteria Uterina/ultraestructura , Útero/anatomía & histología , Animales , Endotelio Vascular/ultraestructura , Femenino , Inmunohistoquímica , Microscopía Electrónica , Embarazo , Ratas , Ratas Sprague-Dawley , Vasodilatación/fisiología
15.
J Am Heart Assoc ; 12(11): e029527, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37232244

RESUMEN

Background Normal brain function depends on the ability of the vasculature to increase blood flow to regions with high metabolic demands. Impaired neurovascular coupling, such as the local hyperemic response to neuronal activity, may contribute to poor neurological outcome after stroke despite successful recanalization, that is, futile recanalization. Methods and Results Mice implanted with chronic cranial windows were trained for awake head-fixation before experiments. One-hour occlusion of the anterior middle cerebral artery branch was induced using single-vessel photothrombosis. Cerebral perfusion and neurovascular coupling were assessed by optical coherence tomography and laser speckle contrast imaging. Capillaries and pericytes were studied in perfusion-fixed tissue by labeling lectin and platelet-derived growth factor receptor ß. Arterial occlusion induced multiple spreading depolarizations over 1 hour associated with substantially reduced blood flow in the peri-ischemic cortex. Approximately half of the capillaries in the peri-ischemic area were no longer perfused at the 3- and 24-hour follow-up (45% [95% CI, 33%-58%] and 53% [95% CI, 39%-66%] reduction, respectively; P<0.0001), which was associated with contraction of an equivalent proportion of peri-ischemic capillary pericytes. The capillaries in the peri-ischemic cortex that remained perfused showed increased point prevalence of dynamic flow stalling (0.5% [95% CI, 0.2%-0.7%] at baseline, 5.1% [95% CI, 3.2%-6.5%] and 3.2% [95% CI, 1.1%-5.3%] at 3- and 24-hour follow-up, respectively; P=0.001). Whisker stimulation at the 3- and 24-hour follow-up led to reduced neurovascular coupling responses in the sensory cortex corresponding to the peri-ischemic region compared with that observed at baseline. Conclusions Arterial occlusion led to contraction of capillary pericytes and capillary flow stalling in the peri-ischemic cortex. Capillary dysfunction was associated with neurovascular uncoupling. Neurovascular coupling impairment associated with capillary dysfunction may be a mechanism that contributes to futile recanalization. Hence, the results from this study suggest a novel treatment target to improve neurological outcome after stroke.


Asunto(s)
Arteriopatías Oclusivas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratones , Animales , Microcirculación , Encéfalo/metabolismo , Circulación Cerebrovascular/fisiología
16.
Am J Physiol Heart Circ Physiol ; 302(12): H2464-76, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22492718

RESUMEN

Obesity is a risk factor for hypertension and other vascular disease. The aim of this study was to examine the effect of diet-induced obesity on endothelium-dependent dilation of rat cremaster muscle arterioles. Male Sprague-Dawley rats (213 ± 1 g) were fed a cafeteria-style high-fat or control diet for 16-20 wk. Control rats weighed 558 ± 7 g compared with obese rats 762 ± 12 g (n = 52-56; P < 0.05). Diet-induced obesity had no effect on acetylcholine (ACh)-induced dilation of isolated, pressurized (70 mmHg) arterioles, but sodium nitroprusside (SNP)-induced vasodilation was enhanced. ACh-induced dilation of arterioles from control rats was abolished by a combination of the K(Ca) blockers apamin, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), and iberiotoxin (IBTX; all 0.1 µmol/l), with no apparent role for nitric oxide (NO). In arterioles from obese rats, however, IBTX had no effect on responses to ACh while the NO synthase (NOS)/guanylate cyclase inhibitors N(ω)-nitro-L-arginine methyl ester (L-NAME; 100 µmol/l)/1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 µmol/l) partially inhibited ACh-induced dilation. Furthermore, NOS activity (but not endothelial NOS expression) was increased in arteries from obese rats. L-NAME/ODQ alone or removal of the endothelium constricted arterioles from obese but not control rats. Expression of caveolin-1 and -2 oligomers (but not monomers or caveolin-3) was increased in arterioles from obese rats. The number of caveolae was reduced in the endothelium of arteries, and caveolae density was increased at the ends of smooth muscle cells from obese rats. Diet-induced obesity abolished the contribution of large-conductance Ca(2+)-activated K(+) channel to ACh-mediated endothelium-dependent dilation of rat cremaster muscle arterioles, while increasing NOS activity and inducing an NO-dependent component.


Asunto(s)
Arteriolas/metabolismo , Caveolas/metabolismo , Endotelio Vascular/metabolismo , Músculo Liso/irrigación sanguínea , Óxido Nítrico/metabolismo , Obesidad/metabolismo , Canales de Potasio/metabolismo , Acetilcolina/farmacología , Animales , Apamina/farmacología , Arteriolas/efectos de los fármacos , Arteriolas/fisiopatología , Caveolas/efectos de los fármacos , Caveolina 1/metabolismo , Caveolina 2/metabolismo , Dieta Alta en Grasa , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiopatología , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio , Masculino , Músculo Liso/metabolismo , Músculo Liso/fisiopatología , Nitroprusiato/farmacología , Obesidad/fisiopatología , Péptidos/farmacología , Pirazoles/farmacología , Ratas , Ratas Sprague-Dawley , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología , Vasodilatadores/farmacología
17.
Microcirculation ; 19(5): 403-15, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22074364

RESUMEN

In several species and in many vascular beds, ultrastructural studies describe close contact sites between the endothelium and smooth muscle of <∼20nm. Such sites are thought to facilitate the local action of signaling molecules and/or the passage of current, as metabolic and electrical coupling conduits between the arterial endothelium and smooth muscle. These sites have the potential for bidirectional communication between the endothelium and smooth muscle, as a key pathway for coordinating vascular function. The aim of this brief review is to summarize the literature on the ultrastructural anatomy and distribution of key components of MECC sites in arteries. In addition to their traditional role of facilitating electrical coupling between the two cell layers, data on the role of MECC sites in arteries, as signaling microdomains involving a spatial localization of channels, receptors and calcium stores are highlighted. Diversity in the density and specific characteristics of MECC sites as signaling microdomains suggests considerable potential for functional diversity within and between arteries in health and disease.


Asunto(s)
Arterias , Endotelio Vascular , Uniones Comunicantes/metabolismo , Microdominios de Membrana/fisiología , Músculo Liso Vascular , Animales , Arterias/anatomía & histología , Arterias/fisiología , Endotelio Vascular/anatomía & histología , Endotelio Vascular/fisiología , Humanos , Músculo Liso Vascular/anatomía & histología , Músculo Liso Vascular/fisiología
18.
Adv Exp Med Biol ; 740: 811-31, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22453971

RESUMEN

Vascular tone refers to the balance between arterial constrictor and dilator activity. The mechanisms that underlie tone are critical for the control of haemodynamics and matching circulatory needs with metabolism, and thus alterations in tone are a primary factor for vascular disease etiology. The dynamic spatiotemporal control of intracellular Ca(2+) levels in arterial endothelial and smooth muscle cells facilitates the modulation of multiple vascular signaling pathways. Thus, control of Ca(2+) levels in these cells is integral for the maintenance of tone and blood flow, and intimately associated with both physiological and pathophysiological states. Hence, understanding the mechanisms that underlie the modulation of vascular Ca(2+) activity is critical for both fundamental knowledge of artery function, and for the development of targeted therapies. This brief review highlights the role of Ca(2+) signaling in vascular endothelial function, with a focus on contact-mediated vasodilator mechanisms associated with endothelium-derived hyperpolarization and the longitudinal conduction of responses over distance.


Asunto(s)
Señalización del Calcio , Calcio/fisiología , Endotelio Vascular/fisiología , Transducción de Señal/fisiología , Acetilcolina/farmacología , Adenosina Trifosfato/fisiología , Animales , Humanos , Canales Catiónicos TRPC/fisiología , Vasodilatación/efectos de los fármacos
19.
J Thromb Haemost ; 20(11): 2587-2600, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35867883

RESUMEN

BACKGROUND: Within the vasculature platelets and endothelial cells play crucial roles in hemostasis and thrombosis. Platelets, like endothelial cells, possess intermediate conductance Ca2+ -activated K+ (IKCa ) channels and generate nitric oxide (NO). Although NO limits platelet aggregation, the role of IKCa channels in platelet function and NO generation has not yet been explored. OBJECTIVES: We investigated whether IKCa channel activation inhibits platelet aggregation, and per endothelial cells, enhances platelet NO production. METHODS: Platelets were isolated from human volunteers. Aggregometry, confocal microscopy, and a novel flow chamber model, the Quartz Crystal Microbalance (QCM) were used to assess platelet function. Flow cytometry was used to measure platelet NO production, calcium signaling, membrane potential, integrin αIIb /ß3 activation, granule release, and procoagulant platelet formation. RESULTS: Platelet IKCa channel activation with SKA-31 inhibited aggregation in a concentration-dependent manner, an effect reversed by the selective IKCa channel blocker TRAM-34. The QCM model along with confocal microscopy demonstrated that SKA-31 inhibited platelet aggregation under flow conditions. Surprisingly, IKCa activation by SKA-31 inhibited platelet NO generation, but this could be explained by a concomitant reduction in platelet calcium signaling. IKCa activation by SKA-31 also inhibited dense and alpha-granule secretion and integrin αIIb /ß3 activation, but maintained platelet phosphatidylserine surface exposure as a measure of procoagulant response. CONCLUSIONS: Platelet IKCa channel activation inhibits aggregation by reducing calcium-signaling and granule secretion, but not by enhancing platelet NO generation. IKCa channels may be novel targets for the development of antiplatelet drugs that limit atherothrombosis, but not coagulation.


Asunto(s)
Células Endoteliales , Canales de Potasio de Conductancia Intermedia Activados por el Calcio , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/farmacología , Células Endoteliales/metabolismo , Óxido Nítrico/metabolismo , Canales de Potasio/farmacología , Agregación Plaquetaria , Calcio/metabolismo , Fosfatidilserinas , Inhibidores de Agregación Plaquetaria/farmacología , Integrinas
20.
J Physiol ; 589(Pt 10): 2607-23, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21486765

RESUMEN

Blood flow is adjusted to tissue demand through rapidly ascending vasodilatations resulting from conduction of hyperpolarisation through vascular gap junctions. We investigated how these dilatations can spread without attenuation if mediated by an electrical signal. Cremaster muscle arterioles were studied in vivo by simultaneously measuring membrane potential and vessel diameter. Focal application of acetylcholine elicited hyperpolarisations which decayed passively with distance from the local site,while dilatation spread upstream without attenuation. Analysis of simultaneous recordings at the local site revealed that hyperpolarisation and dilatation were only linearly related over a restricted voltage range to a threshold potential, beyond which dilatation was maximal. Experimental data could be simulated in a computational model with electrotonic decay of hyperpolarisation but imposition of this threshold. The model was tested by reducing the amplitude of the local hyperpolarisation which led to entry into the linear range closer to the local site and decay of dilatation. Serial section electron microscopy and light dye treatment confirmed that the spread of dilatation occurred through the endothelium and that the two cell layers were tightly coupled. Generality of the mechanism was demonstrated by applying the model to the attenuated propagation of dilatation found in larger arteries.We conclude that long distance spread of locally initiated dilatations is not due to a regenerative electrical phenomenon, but rather a restricted linear relationship between voltage and vessel tone, which minimises the impact of electrotonic decay of voltage. Disease-related alterations in endothelial coupling or ion channel expression could therefore decrease the ability to adjust blood flow to meet metabolic demand.


Asunto(s)
Modelos Biológicos , Dinámicas no Lineales , Vasodilatación/fisiología , Acetilcolina/farmacología , Animales , Arteriolas/citología , Arteriolas/efectos de los fármacos , Arteriolas/fisiología , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Uniones Comunicantes/fisiología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA