Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 63(20): 9014-9025, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38723621

RESUMEN

Electron-coupled-proton buffers (ECPBs) store and deliver protons and electrons in a reversible fashion. We have recently reported an ECPB based on Cu and a redox-active ligand that promoted 4H+/4e- reversible transformations (J. Am. Chem. Soc. 2022, 144, 16905). Herein, we report a series of Cu-based ECPBs in which the ability of these to accept and/or donate H• equivalents can be tuned via ligand modification. The thermochemistry of the 4H+/4e- ECPB equilibrium was determined using open-circuit potential measurements. The reactivity of the ECPBs against proton-coupled electron transfer (PCET) reagents was also analyzed, and the results obtained were rationalized based on the thermochemical parameters. Experimental and computational analysis of the thermochemistry of the H+/e- transfers involved in the 4H+/4e- ECPB transformations found substantial differences between the stepwise (namely, BDFE1, BDFE2, BDFE3, and BDFE4) and average bond dissociation free energy values (BDFEavg.). Our analysis suggests that this "redox unleveling" is critical to promoting the disproportionation and ligand-exchange reactions involved in the 4H+/4e- ECPB equilibria. The difference in BDFEavg. within the series of Cu-based ECPBs was found to arise from a substantial change in the redox potential (E1/2) upon modification of the ligand scaffold, which is not fully compensated for by a change in the acidity/basicity (pKa), suggesting "thermochemical decompensation".

2.
Inorg Chem ; 62(26): 10039-10043, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37339080

RESUMEN

Methylation/demethylation of cytosines in DNA is central to epigenetics, which plays crucial roles in the regulation of about half of all human genes. Although the methylation mechanism, which downregulates gene expression, has been sufficiently decoded; the demethylation pathway, which upregulates gene expression, still holds questions to be answered. Demethylation of 5-methylcytosine by ten-eleven translocation (TET) enzymes yields understudied but epigenetically relevant intermediates, 5-hydroxymethyl (5-hmC), 5-formyl (5-fC), and 5-carboxyl (5-caC) cytosines. Here we report an iron complex, FeIIITAML (TAML = tetraamido macrocyclic ligand), which can facilitate selective oxidation of 5-hmC to its oxidative derivatives by forming a high-valent Fe-oxo intermediate in the presence of H2O2 under physiologically relevant conditions. Detailed HPLC analyses supported by a wide reaction condition optimization for the 5-hmC → 5-fC oxidation provides us with a chemical model of the TET enzyme. This study shines light on future efforts for a better understanding of the roles of 5-hmC and the TET enzyme mechanism and potentially novel therapeutic methods.


Asunto(s)
Citosina , Modelos Químicos , Humanos , Peróxido de Hidrógeno , Metilación de ADN , 5-Metilcitosina/análisis , 5-Metilcitosina/metabolismo , Oxidación-Reducción
3.
Artículo en Inglés | MEDLINE | ID: mdl-36411576

RESUMEN

BACKGROUND: Since their inception, preclinical experimental models have played an important role in investigating and characterizing disease pathogenesis. These in vivo, ex vivo, and in vitro preclinical tests also aid in identifying targets, evaluating potential therapeutic drugs, and validating treatment protocols. INTRODUCTION: Diarrhea is a leading cause of mortality and morbidity, particularly among children in developing countries, and it represents a huge health-care challenge on a global scale. Due to its chronic manifestations, alternative anti-diarrheal medications must be tested and developed because of the undesirable side effects of currently existing anti-diarrheal drugs. METHODS: Several online databases, including Science Direct, PubMed, Web of Science, Google Scholar and Scopus, were used in the literature search. The datasets were searched for entries of studies up to May, 2022. RESULTS: The exhaustive literature study provides a large number of in vivo, in vitro and ex vivo models, which have been used for evaluating the mechanism of the anti-diarrheal effect of drugs in chemically-, pathogen-, disease-induced animal models of diarrhea. The advances and challenges of each model were also addressed in this review. CONCLUSION: This review encompasses diverse strategies for screening drugs with anti-diarrheal effects and covers a wide range of pathophysiological and molecular mechanisms linked to diarrhea, with a particular emphasis on the challenges of evaluating and predictively validating these experimental models in preclinical studies. This could also help researchers find a new medicine to treat diabetes more effectively and with fewer adverse effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA