Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mikrochim Acta ; 186(11): 744, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31686272

RESUMEN

A flower-like Fe3O4/GO/CdSe nanodot magnetic hybrid material was produced and applied to magnetic solid-phase extraction of ibuprofen from pharmaceuticals, water, and urine samples. The material was characterized by X-ray diffraction, Raman spectroscopy and field emission scanning electron microscopy and SEM-EDX. The pH value, volume of sample solution, amount of sorbent, type and volume of elution solvent and extraction time were optimized. Following elution with acetone, ibuprofen was quantified by HPLC-DAD detection. The recoveries of ibuprofen from spiked real samples ranged between 87 and 109%, and the intra-day and inter-day relative standard deviations from 1.25 to 3.02%. The limit of detection, limit of quantification and preconcentration factor are 0.36 ng·mL-1,1.20 ng·mL-1 and 150, respectively. Graphical abstract Schematic representation of the combination of flower-like Fe3O4/GO/CdSe nanodot-based magnetic solid phase extraction (MSPE) and high-performance liquid chromatography (HPLC) procedure for the extraction and analysis of ibuprofen in pharmaceuticals, water, and urine samples.

2.
ACS Omega ; 7(27): 23223-23233, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35847341

RESUMEN

In this period when environmental pollution has become uncontrollable, the removal of drug active substances reaching the environment and the analysis of drug active substances in different matrix environments are important for both living life and a sustainable environment. Therefore, the production of multifunctional materials that can be used in these two different processes has gained importance in the literature. Based on this thought, in this study, a g-C3N4@TiO2@Fe3O4 multifunctional nanohybrid material was synthesized and used for magnetic solid-phase extraction (MSPE) and photocatalytic degradation of trimethoprim and isoniazid, used together in tuberculosis treatment. All analyses were performed by high-performance liquid chromatography using a diode-array detection (HPLC-DAD) system. The synthesized material was characterized by X-ray diffraction spectroscopy (XRD), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET) method, ζ-potential analysis, field-emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDX). Important analytical parameters for the MSPE method such as the pH value of the sample solution, the volume of the sample solution, the amount of the sorbent, the type and volume of the elution solvent, and extraction time were optimized. The optimized MSPE method was then applied to different environmental waters and pharmaceutical samples. The recovery percentages for these samples were found to be between 95 and 107%. For trimethoprim and isoniazid, the limit of detections (LODs) were 0.055 and 0.145 and the limit of quantifications (LOQs) were 0.167 and 0.439 ng·mL-1, respectively. It was observed that ∼100% of trimethoprim and isoniazid active components were photocatalytically removed from the g-C3N4@TiO2@Fe3O4 nanohybrid material in ∼120 min under UV light.

3.
ACS Appl Nano Mater ; 5(5): 6029-6054, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37552745

RESUMEN

Scientists, doctors, engineers, and even entire societies have become aware of the seriousness of the COVID-19 infection and are taking action quickly, using all the tools from protection to treatment against coronavirus SARS-CoV-2. Especially in this sense, scientific approaches and materials using nanotechnology are frequently preferred. In this review, we focus on how nanoscience and nanotechnology approaches can be used for protective equipment, diagnostic and treatment methods, medicine, and vaccine applications to stop the coronavirus SARS-CoV-2 and prevent its spread. SARS-CoV-2, which itself can be considered as a core-shell nanoparticle, can interact with various materials around it and remain bound for variable periods of time while maintaining its bioactivity. These applications are especially critical for the controlled use of disinfection systems. One of the most important processes in the fight against coronavirus is the rapid diagnosis of the virus in humans and the initiation of isolation and treatment processes. The development of nanotechnology-based test and diagnostic kits is another important research thrust. Nanotechnological therapeutics based on antiviral drug design and nanoarchitecture vaccines have been vital. Nanotechnology plays critical roles in the production of protective film surfaces for self-cleaning and antiviral masks, gloves, and laboratory clothes. An overview of literature studies highlighting nanotechnology and nanomaterial-based approaches to combat SARS-CoV-2 is presented.

4.
Talanta ; 229: 122285, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33838779

RESUMEN

The importance of magnetic nanomaterials and magnetic hybrid materials, which are classified as new generation materials, in analytical applications is increasingly understood, and research on the adaptation of these materials to analytical methods has gained momentum. Development of sample preparation techniques and sensor systems using magnetic nanomaterials for the analysis of inorganic, organic and biomolecules in biological samples, which are among the samples that analytical chemists work on most, are among the priority issues. Therefore in this review, we focused on the use of magnetic nanomaterials for the bioanalytical applications including inorganic and organic species and biomolecules in different biological samples such as primarily blood, serum, plasma, tissue extracts, urine and milk. We summarized recent progresses, prevailing techniques, applied formats, and future trends in sample preparation-analysis methods and sensors based on magnetic nanomaterials (Mag-NMs). First, we provided a brief introduction of magnetic nanomaterials, especially their magnetic properties that can be utilized for bioanalytical applications. Second, we discussed the synthesis of these Mag-NMs. Third, we reviewed recent advances in bioanalytical applications of the Mag-NMs in different formats. Finally, recently literature studies on the relevance of Mag-NMs for bioanalysis applications were presented.


Asunto(s)
Nanoestructuras , Técnicas Biosensibles , Fenómenos Magnéticos , Fenómenos Físicos
5.
Talanta ; 230: 122307, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33934773

RESUMEN

A magnetic solid phase extraction (MSPE) coupled with high-performance liquid chromatography-diode array detection (HPLC-DAD) methodology was developed for the determination of chloramphenicol (CP) and tetracycline (TET) antibiotic residues in milk samples. As a solid phase sorbent, C-nanofiber coated magnetic nanoparticles were synthesized and extensively characterized using Field Emission Scanning Electron Microscopy (FE-SEM), Raman Spectroscopy and X-ray Powder Diffraction (XRD) analysis. Experimental variables of MSPE method for both antibiotic analytes were investigated and optimized systematically. After MSPE, the linear range for both the analytes (r2 > 0.9954) were obtained in a range 10.0-600.0 ng mL-1. The limit of detections (LODs) for CP and TET were 3.02 and 3.52 ng mL-1, respectively while RSDs % were below than 4.0%. Finally, the developed method based on MPSE-HPLC-DAD was applied to real milk samples to quantify the antibiotic residues. Recovery values for each antibiotic compound were found in the range of 94.6-105.4% (n = 3) by using spiked model solution.


Asunto(s)
Cloranfenicol , Nanofibras , Animales , Antibacterianos , Cromatografía Líquida de Alta Presión , Límite de Detección , Fenómenos Magnéticos , Leche , Extracción en Fase Sólida
6.
ACS Appl Mater Interfaces ; 13(4): 5678-5690, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33492946

RESUMEN

The COVID-19 pandemic has clearly shown the importance of developments in fabrication of advanced protective equipment. This study investigates the potential of using multifunctional electrospun poly(methyl methacrylate) (PMMA) nanofibers decorated with ZnO nanorods and Ag nanoparticles (PMMA/ZnO-Ag NFs) in protective mats. Herein, the PMMA/ZnO-Ag NFs with an average diameter of 450 nm were simply prepared on a nonwoven fabric by directly electrospinning from solutions containing PMMA, ZnO nanorods, and Ag nanoparticles. The novel material showed high performance with four functionalities (i) antibacterial agent for killing of Gram-negative and Gram-positive bacteria, (ii) antiviral agent for inhibition of corona and influenza viruses, (iii) photocatalyst for degradation of organic pollutants, enabling a self-cleaning protective mat, and (iv) reusable surface-enhanced Raman scattering substrate for quantitative analysis of trace pollutants on the nanofiber. This multi-functional material has high potential for use in protective clothing applications by providing passive and active protection pathways together with sensing capabilities.


Asunto(s)
Antiinfecciosos/química , Nanopartículas del Metal/química , Plata/química , Óxido de Zinc/química , Antibacterianos/química , Antivirales/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Nanofibras/química , Nanotubos/química , Polimetil Metacrilato/química , Espectrometría Raman
7.
Talanta ; 213: 120813, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32200918

RESUMEN

Accurate sensitive analysis of drug ingredient substances in biological, pharmaceutical and environmental samples and removal of drug ingredient substances in environmental samples owngreat importance for sustaining viability. The realization of these processes using a single material offers significant advantages in terms of cost, time and ease of use. In this study, TiO2 nanoparticles and C-Nanofibers modified magnetic Fe3O4 nanospheres (TiO2@Fe3O4@C-NFs) synthesized as a multifunctional material employing a simple hydrothermal synthesis method. This innovative material was exploited in the magnetic solid-phase extraction (MSPE) method for the preconcentration of ibuprofen and photocatalytic degradation of antibiotics, non-steroidal anti-inflammatory drugs (NSAIDs), and azo dye. To our knowledge, no studies have been previously conducted using the same material as magnetic solid-phase extraction adsorbent and magnetically separable photocatalyst. The characterization of TiO2@Fe3O4@C-NFs was carried out by XRD, FE-SEM, EDX and Raman techniques. The main analytical parameters affecting MSPE performance of ibuprofen such as pH, sorbent amount eluent type and volume and sample volume were optimized. The optimum values of the method were determined at the following parameters: pH 4.0, adsorbent amount 150 mg and eluent 2 mL of acetone. Ibuprofen analysis after MSPE was carried out using a high-performance liquid chromatography diode array detection system (HPLC-DAD). The photocatalytic degradation efficiencies of TiO2@Fe3O4@C-NF hybrid material for probe-analytes reached 80-100% and the complete degradation attained within the range of 8-125 min under UV irradiation. Simple preparation, practical isolation from solutions, high efficiency, reproducibility, and sustainability are the main advantages of the TiO2@Fe3O4@C-NFs for MSPE and photocatalytic degradation applications.


Asunto(s)
Antiinflamatorios no Esteroideos/aislamiento & purificación , Colorantes/aislamiento & purificación , Ibuprofeno/aislamiento & purificación , Nanopartículas de Magnetita/química , Titanio/química , Contaminantes Químicos del Agua/aislamiento & purificación , Compuestos Azo/aislamiento & purificación , Catálisis , Magnetismo , Nanofibras/química , Fotólisis , Extracción en Fase Sólida/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA