Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35022651

RESUMEN

Two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS) provides a large amount of molecular information from biological samples. However, the lack of a comprehensive compound library or customizable bioinformatics tool is currently a challenge in GC × GC-TOFMS data analysis. We present an open-source deep learning (DL) software called contour regions of interest (ROI) identification, simulation and untargeted metabolomics profiler (CRISP). CRISP integrates multiple customizable deep neural network architectures for assisting the semi-automated identification of ROIs, contour synthesis, resolution enhancement and classification of GC × GC-TOFMS-based contour images. The approach includes the novel aggregate feature representative contour (AFRC) construction and stacked ROIs. This generates an unbiased contour image dataset that enhances the contrasting characteristics between different test groups and can be suitable for small sample sizes. The utility of the generative models and the accuracy and efficacy of the platform were demonstrated using a dataset of GC × GC-TOFMS contour images from patients with late-stage diabetic nephropathy and healthy control groups. CRISP successfully constructed AFRC images and identified over five ROIs to create a deepstacked dataset. The high fidelity, 512 × 512-pixels generative model was trained as a generator with a Fréchet inception distance of <47.00. The trained classifier achieved an AUROC of >0.96 and a classification accuracy of >95.00% for datasets with and without column bleed. Overall, CRISP demonstrates good potential as a DL-based approach for the rapid analysis of 4-D GC × GC-TOFMS untargeted metabolite profiles by directly implementing contour images. CRISP is available at https://github.com/vivekmathema/GCxGC-CRISP.


Asunto(s)
Aprendizaje Profundo , Diagnóstico por Imagen , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Metabolómica/métodos , Programas Informáticos
2.
J Chem Inf Model ; 64(5): 1533-1542, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38393779

RESUMEN

The rotationally averaged collision cross-section (CCS) determined by ion mobility-mass spectrometry (IM-MS) facilitates the identification of various biomolecules. Although machine learning (ML) models have recently emerged as a highly accurate approach for predicting CCS values, they rely on large data sets from various instruments, calibrants, and setups, which can introduce additional errors. In this study, we identified and validated that ion's polarizability and mass-to-charge ratio (m/z) have the most significant predictive power for traveling-wave IM CCS values in relation to other physicochemical properties of ions. Constructed solely based on these two physicochemical properties, our CCS prediction approach demonstrated high accuracy (mean relative error of <3.0%) even when trained with limited data (15 CCS values). Given its ability to excel with limited data, our approach harbors immense potential for constructing a precisely predicted CCS database tailored to each distinct experimental setup. A Python script for CCS prediction using our approach is freely available at https://github.com/MSBSiriraj/SVR_CCSPrediction under the GNU General Public License (GPL) version 3.


Asunto(s)
Espectrometría de Movilidad Iónica , Iones/química , Espectrometría de Movilidad Iónica/métodos
3.
J Biol Chem ; 298(10): 102445, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36055403

RESUMEN

Two dimensional GC (GC × GC)-time-of-flight mass spectrometry (TOFMS) has been used to improve accurate metabolite identification in the chemical industry, but this method has not been applied as readily in biomedical research. Here, we evaluated and validated the performance of high resolution GC × GC-TOFMS against that of GC-TOFMS for metabolomics analysis of two different plasma matrices, from healthy controls (CON) and diabetes mellitus (DM) patients with kidney failure (DM with KF). We found GC × GC-TOFMS outperformed traditional GC-TOFMS in terms of separation performance and metabolite coverage. Several metabolites from both the CON and DM with KF matrices, such as carbohydrates and carbohydrate-conjugate metabolites, were exclusively detected using GC × GC-TOFMS. Additionally, we applied this method to characterize significant metabolites in the DM with KF group, with focused analysis of four metabolite groups: sugars, sugar alcohols, amino acids, and free fatty acids. Our plasma metabolomics results revealed 35 significant metabolites (12 unique and 23 concentration-dependent metabolites) in the DM with KF group, as compared with those in the CON and DM groups (N = 20 for each group). Interestingly, we determined 17 of the 35 (14/17 verified with reference standards) significant metabolites identified from both the analyses were metabolites from the sugar and sugar alcohol groups, with significantly higher concentrations in the DM with KF group than in the CON and DM groups. Enrichment analysis of these 14 metabolites also revealed that alterations in galactose metabolism and the polyol pathway are related to DM with KF. Overall, our application of GC × GC-TOFMS identified key metabolites in complex plasma matrices.


Asunto(s)
Neuropatías Diabéticas , Cromatografía de Gases y Espectrometría de Masas , Metabolómica , Insuficiencia Renal , Alcoholes del Azúcar , Azúcares , Humanos , Cromatografía de Gases y Espectrometría de Masas/métodos , Metabolómica/métodos , Insuficiencia Renal/sangre , Alcoholes del Azúcar/sangre , Azúcares/sangre , Neuropatías Diabéticas/sangre
4.
Analyst ; 146(13): 4357-4364, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34128007

RESUMEN

Monitoring of glycated human serum albumin (GHSA) as a glycemic marker for screening and monitoring of diabetes mellitus is widely practiced for patients with conditions that affect red blood cells. In this study, a complex comprising Pb ions adsorbed on graphene oxide (GO-Pb) was fabricated and utilized as a versatile probe in a fluorescence-electrochemical aptasensor for GHSA quantification. To simplify the aptasensor, the GO-Pb complex probe was prepared via an ion adsorption process. After modification with a fluorophore-labeled aptamer, the GO-Pb complex served as an excellent energy acceptor in fluorescence-based analysis, as well as generating a high current in the electrochemical transducer. Additionally, the proposed platform can detect GHSA via the dual technique from a single sample, allowing for precise and accurate results. Under optimal conditions, the fluorescence-electrochemical aptasensor exhibited a linear relationship with GHSA concentrations from 0.001 to 80 µg mL-1 and from 0.005 to 10 µg mL-1 for fluorescence and electrochemical detection, respectively. The corresponding detection limits were 8.80 ng mL-1 and 0.77 ng mL-1, respectively. The proposed aptasensor additionally displayed good selectivity and excellent stability. Moreover, its successful application in the analysis of clinical samples further demonstrated its utility. Therefore, the proposed platform has significant potential as a novel, facile, highly responsive, and low-cost monitoring method for the development of diabetes mellitus diagnostic devices intended for a clinical setting.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Grafito , Nanocompuestos , Técnicas Electroquímicas , Humanos , Plomo , Límite de Detección , Albúmina Sérica Humana
6.
Ann Hematol ; 98(9): 2045-2052, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31243572

RESUMEN

Thalassemia has a high prevalence in Thailand. Oxidative damage to erythroid cells is known to be one of the major etiologies in thalassemia pathophysiology. Oxidative stress status of thalassemia is potentiated by the heme, nonheme iron, and free iron resulting from imbalanced globin synthesis. In addition, levels of antioxidant proteins are reduced in α-thalassemia and ß-thalassemia erythrocytes. However, the primary molecular mechanism for this phenotype remains unknown. Our study showed a high expression of miR-144 in ß- and α-thalassemia. An increased miR-144 expression leads to decreased expression of nuclear factor erythroid 2-related factor 2 (NRF2) target, especially in α-thalassemia. In α-thalassemia, miR-144 and NRF2 target are associated with glutathione level and anemia severity. To study the effect of miR-144 expression, the gain-loss of miR-144 expression was performed by miR inhibitor and mimic transfection in the erythroblastic cell line. This study reveals that miR-144 expression was upregulated, whereas NRF2 expression and glutathione levels were decreased in comparison with the untreated condition after miR mimic transfection, while the reduction of miR-144 expression contributed to the increased NRF2 expression and glutathione level compared with the untreated condition after miR inhibitor transfection. Moreover, miR-144 overexpression leads to significantly increased sensitivity to oxidative stress at indicated concentrations of hydrogen peroxide (H2O2) and rescued by miR-144 inhibitor. Taken together, our findings suggest that dysregulation of miR-144 may play a role in the reduced ability of erythrocyte to deal with oxidative stress and increased RBC hemolysis susceptibility especially in thalassemia.


Asunto(s)
Eritrocitos/metabolismo , MicroARNs/biosíntesis , Factor 2 Relacionado con NF-E2/biosíntesis , Estrés Oxidativo , Regulación hacia Arriba , Talasemia alfa/metabolismo , Talasemia beta/metabolismo , Eritrocitos/patología , Femenino , Glutatión/biosíntesis , Glutatión/genética , Hemólisis , Humanos , Peróxido de Hidrógeno/metabolismo , Células K562 , Masculino , MicroARNs/genética , Factor 2 Relacionado con NF-E2/genética , Talasemia alfa/genética , Talasemia alfa/patología , Talasemia beta/genética , Talasemia beta/patología
7.
Cytokine ; 104: 1-7, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29414320

RESUMEN

BACKGROUND: The balance of several cytokines likely influences the resolution of glomerulonephritis. Monocyte chemoattractant protein-1(MCP-1) is a chemokine that promotes renal inflammation whereas epidermal growth factor (EGF) stimulates protective responses. Previously, high urine MCP-1(MCP-1) and low urine EGF (EGF) levels were found to be associated with tubulointerstitial fibrosis, but there is limited information on the value of these mediators as predictors of therapeutic responses or long term outcome in primary glomerulonephritis. OBJECTIVES: To determine the performance of urine EGF, MCP-1 or their ratio at baseline as biomarkers to predict complete remission, and the relationship of these mediators with subsequent renal function 24 months later in primary glomerulonephritis. METHODS: This is a prospective study of patients with biopsy-proven primary glomerulonephritis. Baseline urine samples were collected at biopsy before therapy. MCP-1 and EGF were analyzed by enzyme-linked immunosorbent assays and expressed as a ratio to urine creatinine (ng/mgCr) or as EGF/MCP-1 ratio (ng/ng). Proteinuria and estimated glomerular filtration rate (eGRF) were monitored after therapy. Complete remission (CR) was defined as proteinuria ≤ 0.3 g/gCr. RESULTS: Median follow-up was 20 months. Of all patients (n = 74), 38 patients (51.4%) subsequently achieved CR. Baseline urine EGF and EGF/MCP-1 levels were significantly higher in CR compared to Not CR. By contrast, MCP-1 was not different. High EGF (EGF > 75 ng/mgCr) was a significant predictor (OR 2.28) for CR by multivariate analysis after adjusting for proteinuria, blood pressure, baseline eGFR. In patients who completed 24 months follow-up (n = 43), baseline EGF correlated inversely with proteinuria and positively with eGFR at 24 months. CONCLUSION: High urine EGF level is a promising biomarker of CR. Baseline EGF levels correlated with kidney function at 2 years. EGF/MCP-1 was not superior to EGF alone. Further studies are necessary to determine the role of urine EGF as a guide to therapy in primary GN.


Asunto(s)
Quimiocina CCL2/orina , Factor de Crecimiento Epidérmico/orina , Glomerulonefritis/orina , Biomarcadores/orina , Citocinas/orina , Femenino , Estudios de Seguimiento , Tasa de Filtración Glomerular , Glomerulonefritis/complicaciones , Glomerulonefritis/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Proteinuria/complicaciones , Proteinuria/fisiopatología , Proteinuria/orina , Curva ROC , Inducción de Remisión
8.
Kidney Blood Press Res ; 41(6): 997-1007, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27988512

RESUMEN

BACKGROUND/AIMS: The degree of tubular atrophy and interstitial fibrosis (IFTA) is an important prognostic factor in glomerulonephritis. Imbalance between pro-inflammatory cytokines such as monocyte chemoattractant protein- 1 (MCP-1) and protective cytokines such as epidermal growth factor (EGF) likely determine IFTA severity. In separate studies, elevated MCP-1 and decreased EGF have been shown to be associated with IFTA severity. In this study, we aim to evaluate the predictive value of urinary EGF/MCP-1 ratio compared to each biomarker individually for moderate to severe IFTA in primary glomerulonephritis (GN). METHODS: Urine samples were collected at biopsy from primary GN (IgA nephropathy, focal and segmental glomerulosclerosis, minimal change disease, membranous nephropathy). MCP-1 and EGF were analyzed by enzyme-linked immunosorbent assay. RESULTS: EGF, MCP-1 and EGF/MCP-1 ratio from primary GN, all correlated with IFTA (n=58). By univariate analysis, glomerular filtration rate, EGF, and EGF/MCP-1 ratio were associated with IFTA. By multivariate analysis, only EGF/MCP-1 ratio was independently associated with IFTA. EGF/MCP-1 ratio had a sensitivity of 88% and specificity of 74 % for IFTA. EGF/MCP-1 had good discrimination for IFTA (AUC=0.85), but the improvement over EGF alone was not significant. CONCLUSION: EGF/MCP-1 ratio is independently associated IFTA severity in primary glomerulonephritis, but the ability of EGF/MCP-1 ratio to discriminate moderate to severe IFTA may not be much better than EGF alone.


Asunto(s)
Quimiocina CCL2/orina , Factor de Crecimiento Epidérmico/orina , Fibrosis/diagnóstico , Glomerulonefritis/patología , Túbulos Renales/patología , Adulto , Atrofia/diagnóstico , Atrofia/patología , Atrofia/orina , Biomarcadores/orina , Femenino , Fibrosis/orina , Humanos , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad , Índice de Severidad de la Enfermedad
9.
ACS Omega ; 9(2): 2263-2271, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38250391

RESUMEN

In this study, we developed magnetic graphene oxide composites by chemically attaching Fe3O4 nanoparticles to graphene oxide nanosheets. Characterization techniques, including Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Raman spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and transmission electron microscopy (TEM), confirmed the successful synthesis of Fe3O4@GO composites with desirable properties. The resulting composites exhibited superparamagnetic behavior, solubility, and compatibility for efficient miRNA separation. Using miR-29a as a model, we demonstrated the effective binding of miR-29a to the magnetic graphene oxide (GO) composites at an optimal concentration of 1.5 mg/mL, followed by a simple separation using magnetic forces. Additionally, the addition of 5.0 M urea enhanced the miRNA recovery. These findings highlight the potential use of our magnetic graphene oxide composites for the efficient separation and recovery of miR-29a, suggesting their broad applicability in various miRNA-based studies. Further exploration can focus on investigating endogenous miRNAs with aberrant expression patterns, contributing to the advancements in precision medicine.

10.
J Pharm Anal ; 14(5): 100921, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38799238

RESUMEN

The collision cross-sections (CCS) measurement using ion mobility spectrometry (IMS) in combination with mass spectrometry (MS) offers a great opportunity to increase confidence in metabolite identification. However, owing to the lack of sensitivity and resolution, IMS has an analytical challenge in studying the CCS values of very low-molecular-weight metabolites (VLMs ≤ 250 Da). Here, we describe an analytical method using ultrahigh-performance liquid chromatography (UPLC) coupled to a traveling wave ion mobility-quadrupole-time-of-flight mass spectrometer optimized for the measurement of VLMs in human urine samples. The experimental CCS values, along with mass spectral properties, were reported for the 174 metabolites. The experimental data included the mass-to-charge ratio (m/z), retention time (RT), tandem MS (MS/MS) spectra, and CCS values. Among the studied metabolites, 263 traveling wave ion mobility spectrometry (TWIMS)-derived CCS values (TWCCSN2) were reported for the first time, and more than 70% of these were CCS values of VLMs. The TWCCSN2 values were highly repeatable, with inter-day variations of <1% relative standard deviation (RSD). The developed method revealed excellent TWCCSN2 accuracy with a CCS difference (ΔCCS) within ±2% of the reported drift tube IMS (DTIMS) and TWIMS CCS values. The complexity of the urine matrix did not affect the precision of the method, as evidenced by ΔCCS within ±1.92%. According to the Metabolomics Standards Initiative, 55 urinary metabolites were identified with a confidence level of 1. Among these 55 metabolites, 53 (96%) were VLMs. The larger number of confirmed compounds found in this study was a result of the addition of TWCCSN2 values, which clearly increased metabolite identification confidence.

11.
ACS Omega ; 8(17): 15266-15275, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37151566

RESUMEN

MicroRNAs (miRNAs) are a family of conserved small noncoding RNAs whose expression is associated with many diseases, including cancer. Salivary miRNAs are gaining popularity as noninvasive diagnostic biomarkers for cancer and other systemic disorders, but their use is limited by their low abundance and complicated detection procedure. Herein, we present a novel self-assembly approach based on rolling circle amplification (RCA) and graphene oxide (GO) for the ultrasensitive detection of miRNA21 and miRNA16 (miRNA oral cancer biomarkers in human saliva). First, target miRNA hybridizes with the RCA template. In the presence of DNA polymerase, the RCA reaction is induced and sequences matching the template are generated. Then, a nicking enzyme cuts the long ssDNA product into tiny pieces to obtain the amplified products. The DNA-decorated GO sensor was fabricated by preabsorbing the ssDNA fluorescence-labeled probe on the GO surface, resulting in fluorescence quenching. The DNA-decorated GO sensor could detect the amplified product via the self-assembly of dsDNA, leading to the desorption and recovery of the fluorescence-labeled probe. Under optimal conditions, the proposed system exhibited ultrasensitive detection; the detection limits of miRNA16 and miRNA21 were 8.81 and 3.85 fM, respectively. It showed a wide range of detection between 10 fM and 100 pM for miRNA16 and between 10 fM and 1 nM for miRNA16. It demonstrated high selectivity, distinguishing between 1- and 3-mismatch nucleotides in target miRNA. Overall, our proposed DNA-decorated GO sensor can accurately detect the salivary miRNAs and may potentially be used for the diagnosis and screening of early-stage oral cancer.

12.
Sci Rep ; 13(1): 15398, 2023 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-37717111

RESUMEN

Filtration of biological liquids has been widely employed in biological, medical, and environmental investigations due to its convenience; many could be performed without energy and on-site, particularly protein separation. However, most available membranes are universal protein absorption or sub-fractionation due to molecule sizes or properties. SPMA, or syringe-push membrane absorption, is a quick and easy way to prepare biofluids for protein evaluation. The idea of initiating SPMA was to filter proteins from human urine for subsequent proteomic analysis. In our previous study, we developed nanofiber membranes made from polybutylene succinate (PBS) composed of graphene oxide (GO) for SPMA. In this study, we combined molecular imprinting with our developed PBS fiber membranes mixed with graphene oxide to improve protein capture selectivity in a lock-and-key fashion and thereby increase the efficacy of protein capture. As a model, we selected albumin from human serum (ABH), a clinically significant urine biomarker, for proteomic application. The nanofibrous membrane was generated utilizing the electrospinning technique with PBS/GO composite. The PBS/GO solution mixed with ABH was injected from a syringe and transformed into nanofibers by an electric voltage, which led the fibers to a rotating collector spinning for fiber collection. The imprinting process was carried out by removing the albumin protein template from the membrane through immersion of the membrane in a 60% acetonitrile solution for 4 h to generate a molecular imprint on the membrane. Protein trapping ability, high surface area, the potential for producing affinity with proteins, and molecular-level memory were all evaluated using the fabricated membrane morphology, protein binding capacity, and quantitative protein measurement. This study revealed that GO is a controlling factor, increasing electrical conductivity and reducing fiber sizes and membrane pore areas in PBS-GO-composites. On the other hand, the molecular imprinting did not influence membrane shape, nanofiber size, or density. Human albumin imprinted membrane could increase the PBS-GO membrane's ABH binding capacity from 50 to 83%. It can be indicated that applying the imprinting technique in combination with the graphene oxide composite technique resulted in enhanced ABH binding capabilities than using either technique individually in membrane fabrication. The suitable protein elution solution is at 60% acetonitrile with an immersion time of 4 h. Our approach has resulted in the possibility of improving filter membranes for protein enrichment and storage in a variety of biological fluids.


Asunto(s)
Impresión Molecular , Nanofibras , Humanos , Proteómica , Albúminas , Acetonitrilos
13.
Sci Rep ; 12(1): 4952, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35322124

RESUMEN

Reactivating of fetal hemoglobin (HbF; α2γ2) can ameliorate the severity of ß-thalassemia disease by compensating for adult hemoglobin deficiency in patients. Previously, microarray analysis revealed that zinc finger protein (ZNF)802 (also known as Juxta-posed with another zinc finger gene-1 (JAZF1)) was upregulated in human erythroblasts derived from adult peripheral blood compared with fetal liver-derived cells, implying a potential role as a HbF repressor. However, deficiency in ZNF802 induced by lentiviral shRNA in ß0-thalassemia/hemoglobinE erythroblasts had no effect on erythroblast proliferation and differentiation. Remarkably, the induction of HBG expression was observed at the transcriptional and translational levels resulting in an increase of HbF to 35.0 ± 3.5%. Interestingly, the embryonic globin transcripts were also upregulated but the translation of embryonic globin was not detected. These results suggest ZNF802 might be a transcriptional repressor of the γ-globin gene in adult erythroid cells.


Asunto(s)
Talasemia , Talasemia beta , Adulto , Proteínas Co-Represoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo/genética , Eritroblastos/metabolismo , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Humanos , Factores de Transcripción/metabolismo , gamma-Globinas/genética , gamma-Globinas/metabolismo
14.
PLoS One ; 17(3): e0263778, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35271583

RESUMEN

INTRODUCTION: There is a need for sensitive and specific biomarkers to predict kidney damage and therapeutic response in lupus nephritis (LN). Monocyte chemoattractant protein-1 (MCP-1) and epidermal growth factor (EGF) are cytokines with divergent roles. EGF or EGF/MCP1 ratio have been shown to correlate with prognosis in primary glomerulonephritis, but there is limited information in lupus nephritis (LN). This study evaluated the roles of MCP-1, EGF or their ratio as biomarkers of histopathology and response to treatment in LN. METHODS: This was a cross-sectional and observational study. Baseline urine MCP-1 and EGF levels in systemic lupus erythematosus (SLE) patients and controls (total n = 101) were compared, and levels were correlated with clinicopathological findings and subsequent response to treatment. RESULTS: MCP-1 was higher in active LN (n = 69) compared to other SLE groups and controls, whereas EGF was not different. MCP-1 correlated with disease activity (proteinuria, renal SLEDAI, classes III/IV/V, and high activity index.) By contrast, EGF correlated with eGFR, but not with proteinuria, activity index, or class III/IV/V. MCP-1 was higher, and EGF was lower in high chronicity index. EGF/MCP-1 decreased with greater clinicopathological severity. In a subgroup with proliferative LN who completed six months of induction therapy (n = 41), EGF at baseline was lower in non-responders compared to responders, whereas MCP-1 was similar. By multivariable analysis, baseline EGF was independently associated with subsequent treatment response. Area under the curve for EGF to predict response was 0.80 (0.66-0.95). EGF ≥ 65.6 ng/ mgCr demonstrated 85% sensitivity and 71% specificity for response. EGF/MCP-1 did not improve the prediction for response compared to EGF alone. CONCLUSION: MCP-1 increased with disease activity, whereas EGF decreased with low GFR and chronic damage. Urine EGF may be a promising biomarker to predict therapeutic response in LN. EGF/MCP-1 did not improve the prediction of response.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Biomarcadores/orina , Quimiocina CCL2/orina , Estudios Transversales , Factor de Crecimiento Epidérmico/orina , Femenino , Humanos , Lupus Eritematoso Sistémico/tratamiento farmacológico , Nefritis Lúpica/patología , Masculino , Proteinuria
15.
BMC Res Notes ; 15(1): 44, 2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35151353

RESUMEN

OBJECTIVE: To disseminate the portable sequencer MinION in developing countries for the main purpose of battling infectious diseases, we found a consortium called Global Research Alliance in Infectious Diseases (GRAID). By holding and inviting researchers both from developed and developing countries, we aim to train the participants with MinION's operations and foster a collaboration in infectious diseases researches. As a real-life example in which resources are limited, we describe here a result from a training course, a metagenomics analysis from two blood samples collected from a routine cattle surveillance in Kulan Progo District, Yogyakarta Province, Indonesia in 2019. RESULTS: One of the samples was successfully sequenced with enough sequencing yield for further analysis. After depleting the reads mapped to host DNA, the remaining reads were shown to map to Theileria orientalis using BLAST and OneCodex. Although the reads were also mapped to Clostridium botulinum, those were found to be artifacts derived from the cow genome. An effort to construct a consensus sequence was successful using a reference-based approach with Pomoxis. Hence, we concluded that the asymptomatic cow might be infected with T. orientalis and showed the usefulness of sequencing technology, specifically the MinION platform, in a developing country.


Asunto(s)
Enfermedades Transmisibles , Secuenciación de Nucleótidos de Alto Rendimiento , Animales , Bovinos , Genoma , Metagenómica , Análisis de Secuencia de ADN
16.
Polymers (Basel) ; 13(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206523

RESUMEN

The adsorption of proteins on membranes has been used for simple, low-cost, and minimal sample handling of large volume, low protein abundance liquid samples. Syringe-push membrane absorption (SPMA) is an innovative way to process bio-fluid samples by combining a medical syringe and protein-absorbable membrane, which makes SPMA a simple, rapid protein and proteomic analysis method. However, the membrane used for SPMA is only limited to commercially available protein-absorbable membrane options. To raise the method's efficiency, higher protein binding capacity with a lower back pressure membrane is needed. In this research, we fabricated electrospun polybutylene succinate (PBS) membrane and compared it to electrospun polyvinylidene fluoride (PVDF). Rolling electrospinning (RE) and non-rolling electrospinning (NRE) were employed to synthesize polymer fibers, resulting in the different characteristics of mechanical and morphological properties. Adding graphene oxide (GO) composite does not affect their mechanical properties; however, electrospun PBS membrane can be applied as a filter membrane and has a higher pore area than electrospun PVDF membrane. Albumin solution filtration was performed using all the electrospun filter membranes by the SPMA technique to measure the protein capture efficiency and staining of the protein on the membranes, and these membranes were compared to the commercial filter membranes-PVDF, nitrocellulose, and Whatman no. 1. A combination of rolling electrospinning with graphene oxide composite and PBS resulted in two times more captured protein when compared to commercial membrane filtration and more than sixfold protein binding than non-composite polymer. The protein staining results further confirmed the enhancement of the protein binding property, showing more intense stained color in compositing polymer with GO.

17.
Biosensors (Basel) ; 11(3)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802824

RESUMEN

An immobilization-free electrochemical sensor coupled with a graphene oxide (GO)-based aptasensor was developed for glycated human serum albumin (GHSA) detection. The concentration of GHSA was monitored by measuring the electrochemical response of free GO and aptamer-bound GO in the presence of glycated albumin; their currents served as the analytical signals. The electrochemical aptasensor exhibited good performance with a base-10 logarithmic scale. The calibration curve was achieved in the range of 0.01-50 µg/mL. The limit of detection (LOD) was 8.70 ng/mL. The developed method was considered a one-drop measurement process because a fabrication step and the probe-immobilization process were not required. This simple sensor offers a cost-effective, rapid, and sensitive detection method, and could be an alternative approach for determination of GHSA levels.


Asunto(s)
Técnicas Biosensibles , Grafito/química , Albúmina Sérica/análisis , Aptámeros de Nucleótidos , Técnicas Electroquímicas , Productos Finales de Glicación Avanzada , Humanos , Límite de Detección , Óxidos , Albúmina Sérica Glicada
18.
PLoS One ; 16(10): e0258223, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34614018

RESUMEN

BACKGROUND: Dialysis patients have an increased risk of mortality. Recently treatment with haemodiafiltration (HDF) has been reported to reduce mortality, particularly cardiovascular mortality, compared to standard high-flux haemodialysis (HD). However, why HDF may offer a survival advantage remains to be determined. So, we conducted a pilot study to explore differences in middle-molecules, inflammation and markers of vascular disease in patients treated by HD and HDF. METHODS: Observational cross-sectional study measuring serum ß2-microglobulin (ß2M), Advanced Glycosylation End Products (AGEs) by skin autofluorescence (SAF), oxidative stress with ischaemia modified albumin ratio (IMAR) and peripheral vascular disease assessment using Ankle-Brachial Index (ABI), and arterial stiffness using Cardio-Ankle Vascular Index (CAVI). RESULTS: We studied 196 patients, mean age 69.1 ± 12.4 years, 172 (87.8%) treated by HD and 24 (12.2%) by HDF. Age, body mass index, co-morbidity and dialysis vintage were not different between HD and HDF groups. Middle molecules; ß2M (31±9.9 vs 31.2±10 ug/mL) and SAF (2.99±0.72 vs 3.0±0.84 AU), ABI (1.06±0.05 vs 1.07±0.10) and CAVI (9.34±1.55 vs 9.35±1.23) were not different, but IMAR was higher in the HD patients (38.4±14.8 vs 31.3 ± 17.4, P = 0.035). CONCLUSIONS: In this pilot observational study, we found patients treated by HDF had lower oxidative stress as measured by IMAR, with no differences in middle molecules. Lower oxidative stress would be expected to have diverse protective effects on the cardiovascular system Although we found no differences in ABI and CAVI, future studies are required to determine whether reduced oxidative stress translates into clinically relevant differences over time.


Asunto(s)
Hemodiafiltración , Estrés Oxidativo , Enfermedades Vasculares Periféricas/patología , Enfermedades Vasculares Periféricas/terapia , Diálisis Renal , Anciano , Biomarcadores/metabolismo , Femenino , Humanos , Masculino , Proyectos Piloto , Albúmina Sérica Humana/metabolismo
19.
iScience ; 24(11): 103355, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34805802

RESUMEN

The current gold standard for classifying lupus nephritis (LN) progression is a renal biopsy, which is an invasive procedure. Undergoing a series of biopsies for monitoring disease progression and treatments is unlikely suitable for patients with LN. Thus, there is an urgent need for non-invasive alternative biomarkers that can facilitate LN class diagnosis. Such biomarkers will be very useful in guiding intervention strategies to mitigate or treat patients with LN. Urine samples were collected from two independent cohorts. Patients with LN were classified into proliferative (class III/IV) and membranous (class V) by kidney histopathology. Metabolomics was performed to identify potential metabolites, which could be specific for the classification of membranous LN. The ratio of picolinic acid (Pic) to tryptophan (Trp) ([Pic/Trp] ratio) was found to be a promising candidate for LN diagnostic and membranous classification. It has high potential as an alternative biomarker for the non-invasive diagnosis of LN.

20.
Artículo en Inglés | MEDLINE | ID: mdl-33396697

RESUMEN

Box jellyfish are extremely potent venom-producing marine organisms. While they have been found worldwide, the highest health burden has been anticipated to be the tropical Indo-Pacific of Southeast Asia (SEA). At least 12 Cubozoan species have now been documented in Thai waters, and many of them inflict acutely lethal strings, especially those under the order Chirodropida. Our previous study has successfully differentiated species of box jellyfish using DNA sequencing to support the morphological study. In this study, we specifically designed polymerase chain reaction (PCR) primers for the 16S ribosomal RNA (rRNA) gene and the mitochondrial DNA cytochrome oxidase subunit I (COI) gene of lethal Thai Chironex species. The SYBR green-based real-time PCR panel was performed for rapid species identification. The sensitivity and specificity of the panel were determined by testing samples of different species. Moreover, we applied the panel to the tentacle sample from a real patient, which helped confirm the animal-of-cause of envenomation. Our results show a success for species identification of box jellyfish using 16S rRNA and COI PCR panel, which revealed congruence between molecular and morphological identification. Furthermore, the panel worked very well with the unknown samples and jellyfish tissue from the real envenomation case. The results demonstrated that molecular panels were able to identify three species of Chironex box jellyfish both rapidly and accurately, and can be performed without having a complete specimen or morphological study.


Asunto(s)
Cubomedusas , Animales , Cubomedusas/clasificación , Cubomedusas/genética , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/genética , Humanos , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Especificidad de la Especie , Tailandia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA