Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Microsc Microanal ; 24(6): 593-603, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30324900

RESUMEN

Many agrowastes are being used for energy production by combustion in power plants. This process generates huge amounts of ash, which has a potential pozzolanic activity for blending with Portland cement or hydrated lime. In this paper, the ash obtained from elephant grass (Pennisetum purpureum Schum var. purple) leaves (EGLs) was studied, including the silicon content and its distribution, the presence of other compounds, and in addition, the presence of silica bodies (phytoliths). Combustion temperatures of 450 and 650°C produced an unaltered inorganic skeleton (spodogram), whereas at 850°C, there is a sintering process because of high potassium content in the ash. Phytoliths and different types of hairs were identified, and they contained high percentages of silica. Magnesium (mainly as periclase) was distributed in the most porous parts in the interior of the leaves. The silica can react with calcium hydroxide (pozzolanic reaction) forming calcium silicate hydrates (observed by field-emission scanning electron microscopy and thermogravimetric analysis). Fixed lime percentages at 28 curing days (63%) indicated the high reactivity of EGL ashes in calcium hydroxide pastes due to the pozzolanic reaction. This study demonstrates the possibility of the reuse of ashes from EGLs for the production of environmental-friendly cements.


Asunto(s)
Magnesio/análisis , Pennisetum/química , Hojas de la Planta/química , Potasio/análisis , Silicio/análisis , Agricultura , Compuestos de Calcio/química , Hidróxido de Calcio/química , Incendios , Silicatos/química , Silicio/química
2.
Materials (Basel) ; 16(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37959438

RESUMEN

The aims of this work were to evaluate the reactivity of sugarcane straw ashes (SCSA) burned under controlled conditions and to analyze their reactivity in blended cement and hydrated lime pastes by thermogravimetric analysis (TG) and calorimetry. Four different ashes were produced, and burned at 600 °C, 700 °C, 800 °C and 900 °C (SCSA600, SCSA700, SCSA800 and SCSA900, respectively). These ashes were characterized by X-ray fluorescence spectroscopy, X-ray diffractometry, particle size distribution by laser diffraction and specific area surfaces to assess their potential interest in the partial replacement of inorganic binders (Portland cement (OPC) and hydrated lime). The hydrated lime pastes were subjected to scanning electron microscopy (SEM) and TG. The blended cement pastes were analyzed by TG and calorimetry, compressive strength testing and mercury intrusion porosimetry. High lime fixation percentages were observed in the hydrated lime and OPC pastes and were higher than 75% and 50% for the ashes burned at 600 °C and 700 °C, respectively. Calorimetry showed a delay in the heat release of SCSA600 and SCSA700 compared to the control paste. These pastes also had higher compressive strength and a smaller total pore volume. The results indicate the positive response of preparing sugar cane ashes under controlled conditions (mainly for straw calcined within the 600-700 °C range) for their use as pozzolanic addition by partially replacing inorganic binders.

3.
Materials (Basel) ; 14(11)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072511

RESUMEN

In this research work, the quantitative characterization of a binary blend comprised of two pozzolans (sugar cane straw (SCSA)-sugar cane bagasse ashes (SCBA), bamboo leaf ash (BLAsh)-SCBA and paper sludge (PS)-fly ash (FA)) taking into account the calculated values of the kinetic parameters of the reaction in the pozzolan/calcium hydroxide system is shown. The paper shows the most significant and important results obtained by the authors in the quantitative assessment (calculation of kinetic parameters) of the pozzolanic reaction of different mixtures of pozzolanic materials that are residues from agriculture or industrial processes. This allows a direct and rigorous comparison of the pozzolanic activity of the binary combinations of materials. The values of the kinetic parameters (reaction rate constant or activation free energy) constitute a very precise quantitative index of the pozzolanic activity of the binary combinations of materials, which is very useful for its employment in the elaboration of ternary cements. This paper shows that the binary blends 1SCBA60Blash40, 1SCBA50Blash50, 1SCBA70Blash30 have a very high pozzolanic reactivity followed by PSLSFA, 2SCBA50SCSA50, PSISFA and SCWI.

4.
Heliyon ; 7(3): e06597, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33869844

RESUMEN

This investigation prospects the feasibility of optimizing the mechanical behavior and dimensional stability of termite's mound soil through alkaline activation. The raw aluminosilicate (termites' soil) was used without any pre-thermal treatment and natural occurring potash was used as the alkaline activator. Different activation level and different initial curing temperature were adopted to examine the effect of the initial temperature and the activator concentration on the Alkali Activated Termite Soil (AATS). Similarly, Scanning Electron Microscopy (SEM)/Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD) and Fourier Transform Infra-Red Spectroscopy (FTIR) were conducted to characterize the microstructure, to determine the crystallinity of the constituents and to identify the functional groups present within the specimens. These characterizations were carried out on the specimens at 15 days after their moulding. The compressive strength was determined for 7, 15 and 90 days to illuminate the fundamental of the optimization process. Results showed that the optimal initial curing temperature was 60 °C for the oven-dry regime at 3wt% activator with compressive strength of 2.56, 4.38 and 7.79 MPa at 7, 15 and 90 days respectively. From the mechanical performances results, the alkali stabilized termite's soil can be used as masonry elements predominantly submitted to compression. The repercussions of the results are analyzed for potential applications of the Alkaline Activation techniques as an environmental-friendly approach to obtain renewable and sustainable building materials at low cost with low energy consumption henceforth replicable in most of the regions.

5.
Int J Biometeorol ; 54(6): 647-52, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19908071

RESUMEN

This study was conducted to determine the relationship among temperatures measured at different anatomical sites of the animal body and their daily pattern as indicative of the thermal stress in lactating dairy cows under tropical conditions. Environmental dry bulb (DBT) and black globe (BGT) temperatures and relative humidity (RH) were recorded. Rectal temperature (RT), respiratory frequency (RF), body surface (BST), internal base of tail (TT), vulva (VT) and auricular temperatures (AT) were collected, from 37 Black and White Holstein cows at 0700, 1300 and 1800 hours. RT showed a moderately and positive correlations with all body temperatures, ranging from 0.59 with TT to 0.64 with BST. Correlations among AT, VT and TT with RF were very similar (from 0.63 to 0.64) and were greater than those observed for RF with RT (0.55) or with BST (0.54). RF and RT were positively correlated to TT (0.63 and 0.59, respectively), AT (r = 0.63 for both) and VT (r = 0.64 and 0.63, respectively). Positive and very high correlations were observed among AT, VT and TT (from 0.94 to 0.97) indicating good association of temperatures measured in these anatomical sites. Correlations of BST with AT and VT were positive and very similar (0.71 and 0.72, respectively) and lower with TT (0.66). The AT, TT, VT and BST presented similar patterns and follow the variations of DBT through the day. Temperatures measured at different anatomical sites of the animal body have the potential to be used as indicative of the thermal stress in lactating dairy cows.


Asunto(s)
Industria Lechera/métodos , Trastornos de Estrés por Calor/veterinaria , Leche/metabolismo , Clima Tropical , Animales , Regulación de la Temperatura Corporal , Bovinos , Femenino , Trastornos de Estrés por Calor/diagnóstico , Calor , Humedad , Lactancia
6.
Materials (Basel) ; 13(19)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003633

RESUMEN

Densification processes are used to improve the mechanical and physical properties of lignocellulose materials by either collapsing the cell cavities or by filling up the pores, consequently reducing the void volume fraction. This paper focuses on an extensive review of bamboo densification process, which is achieved by compressing the material in the direction perpendicular to the fibers using mainly two different techniques: an open system, thermo-mechanical (TM), or a closed system, viscoelastic-thermal-compression (VTC). The main aim of bamboo densification is to decrease its heterogeneity, as well as to improve its mechanical and physical performance. In addition, densification may occur during the manufacturing of bamboo products in which hot-pressing processes are used to mold bamboo panels. There are over 1600 publications about bamboo, concentrated in the recent decade, mainly about engineered materials. Although several papers regarding bamboo and wood densification are available, very few studies have comprehensively investigated the densification process solely through compression of natural bamboo culms. According to the literature, applying a combination of compression of 6-12 MPa at temperatures between 120-170 °C for 8-20 min can produce materials with higher strength in comparison to the mechanical properties of natural bamboo. The majority of research on bamboo densification indicates that the modified material results in improved properties in terms of density, hardness, bending strength, stiffness, and durability. This paper provides a review that consolidates knowledge on the concept of bamboo culm densification, discusses the roles of parameters that control the process, ascertains the best practice, and finally determines gaps in this field of knowledge.

7.
Data Brief ; 28: 104839, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31871985

RESUMEN

This article presents statistical data on the reinforcing effect of three different fibres (sisal, eucalyptus pulp and polypropylene) on the physical and mechanical properties of an alkali activated natural soil produced using extrusion technique for the development of earth-based building materials. The experimental testing program involved characterisation of composite mixtures including a plain unreinforced stabilised matrix (which was plain soil mixed with alkali activator solution) as well as composite mixtures incorporating 3 volume fractions of fibres (0.5, 1.0 & 2.0 vol.%) of each fibre type. Composites were tested to evaluate physical properties (density and water absorption) and flexural response under 4-point loading in both dry and saturated conditions. The obtained values were statistically analyzed using one-way analysis of variance (ANOVA), followed by Tukey multiple comparison tests to ascertain the effect of the reinforcing fibres on the physical and mechanical properties of the composites. Results obtained show unique reinforcing effects of the different fibre types in the alkali activated matrices and the sensitivity of the earth based matrix to variations in fibre volume fraction. This data article is related to "Effects of Fibre Reinforcements on Properties of Extruded Alkali Activated Earthen Building Materials" [1].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA