Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Crit Rev Food Sci Nutr ; 62(9): 2526-2547, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33297728

RESUMEN

Extrusion cooking is receiving increasing attention as technology applied for the production of protein-based products. Researchers in this field showed that proteins from several sources are barely consumed because of their poor functionality and lack of acceptability related to the presence of some antinutritional factors. In this regard, extrusion is becoming of key importance thanks to its ability to improve protein functional properties. Based on this remarkable advantage, several studies have been published so far providing evidence of the enhanced functional, physicochemical and sensory properties of protein-based extruded products. The objective of the present review is to give a detailed overview of the potential of extrusion for the production of protein-based products. More specifically, the work describes all the studies published so far on vegetable and animal proteins including those recently released applying the technology on insect proteins. The aspects related to the functional properties of the extrudates together with the quality changes occurring during the process are also described to highlight the potential of the technology for future applications.


Asunto(s)
Culinaria , Verduras
2.
Sensors (Basel) ; 22(19)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36236596

RESUMEN

Phenolic compounds are an important group of organic molecules with high radical scavenging, antimicrobial, anti-inflammatory, and antioxidant properties. The emerging interest in phenolic compounds in food products has led to the development of various analytical techniques for their detection and characterization. Among them, the coulometric array detector is a sensitive, selective, and precise method for the analysis of polyphenols. This review discusses the principle of this method and recent advances in its development, as well as trends in its application for the analysis of phenolic compounds in food products, such as fruits, cereals, beverages, herbs, and spices.


Asunto(s)
Antiinfecciosos , Antioxidantes , Frutas/química , Fenoles/análisis , Polifenoles/análisis
3.
Sensors (Basel) ; 22(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35270939

RESUMEN

This work aims to evaluate the purity of chromatographic peaks by a two-dimensional correlation (2D-corr) analysis. Such an analysis leads to two contour plots: synchronous and asynchronous. The synchronous contour plot provides information on the number of peaks present in the chromatogram. The asynchronous contour plot reveals the presence of overlapping species on each peak. The utility of 2D-corr analysis was demonstrated by the chromatographic analysis of Capsicum chili extracts obtained by HPLC coupled with a coulometric array of sixteen detectors. Thanks to 16 electrochemical sensors, each poised at increasing potentials, the resulting 2D-corr analysis revealed the presence of at least three species on the peak located at a retention time of 0.93 min. Mass spectrometry (MS) analysis was used to analyze the coeluting species, which were identified as: quinic acid (3.593 min), ascorbic acid (3.943 min), and phenylalanine (4.229 min). Overall, this work supports the use of 2D-corr analysis to reveal the presence of overlapping compounds and, thus, verify the signal purity of chromatographic peaks.


Asunto(s)
Cromatografía Líquida de Alta Presión , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas
4.
Molecules ; 27(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35209112

RESUMEN

By-products of Capsicum chinense Jacq., var Jaguar could be a source of bioactive compounds. Therefore, we evaluated the anti-inflammatory effect, antioxidant activity, and their relationship with the polyphenol content of extracts of habanero pepper by-products obtained from plants grown on black or red soils of Yucatán, Mexico. Moreover, the impact of the type of extraction on their activities was evaluated. The dry by-product extracts were obtained by maceration (ME), Soxhlet (SOX), and supercritical fluid extraction (SFE). Afterward, the in vivo anti-inflammatory effect (TPA-induced ear inflammation) and the in vitro antioxidant activity (ABTS) were evaluated. Finally, the polyphenolic content was quantified by Ultra-Performance Liquid Chromatography (UPLC), and its correlation with both bioactivities was analyzed. The results showed that the SFE extract of stems of plants grown on red soil yielded the highest anti-inflammatory effect (66.1 ± 3.1%), while the extracts obtained by ME and SOX had the highest antioxidant activity (2.80 ± 0.0052 mM Trolox equivalent) and polyphenol content (3280 ± 15.59 mg·100 g-1 dry basis), respectively. A negative correlation between the anti-inflammatory effect, the antioxidant activity, and the polyphenolic content was found. Overall, the present study proposed C. chinense by-products as a valuable source of compounds with anti-inflammatory effect and antioxidant activity.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Capsicum/química , Extractos Vegetales/química , Polifenoles/química , Antiinflamatorios/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Fraccionamiento Químico/métodos , Cromatografía con Fluido Supercrítico , Especificidad de Órganos , Fitoquímicos/química
5.
Molecules ; 25(17)2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32878137

RESUMEN

Lipid-soluble bioactives are important nutrients in foods. However, their addition in food formulations, is often limited by limited solubility and high tendency for oxidation. Lipid-soluble bioactives, such as vitamins A, E, D and K, carotenoids, polyunsaturated fatty acids (PUFA) and essential oils are generally dispersed in water-based solutions by homogenization. Among the different homogenization technologies available, nanoemulsions are one of the most promising. Accordingly, this review aims to summarize the most recent advances in nanoemulsion technology for the encapsulation of lipid-soluble bioactives. Modern approaches for producing nanoemulsion systems will be discussed. In addition, the challenges on the encapsulation of common food ingredients, including the physical and chemical stability of the nanoemulsion systems, will be also critically examined.


Asunto(s)
Composición de Medicamentos , Emulsiones , Lípidos/química , Nanopartículas/química , Nanotecnología , Algoritmos , Estabilidad de Medicamentos , Modelos Teóricos , Estructura Molecular , Nanotecnología/métodos , Solubilidad
6.
Molecules ; 24(22)2019 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-31717511

RESUMEN

This study aims to investigate the effect of essential oils extracted from wood residues of Picea abies on the growth of Escherichia coli. The essential oils were extracted by supercritical carbon dioxide, leading to a yield of 3.4 ± 0.5% (w/w) in 120 min. The antimicrobial effect was tested at 37 °C by isothermal calorimetry. The heat-flow (dq/dt vs. time) was integrated to give a fractional reaction curve (α vs. time). Such curves were fitted by a modified Gompertz function to give the lag-time (λ) and the maximum growth rate (µmax) parameters. The results showed that λ was linearly correlated with E. coli concentration (λ = 1.4 h/log (CFU/mL), R2 = 0.997), whereas µmax was invariant. Moreover, the overall heat was nearly constant to all the dilutions of E. coli. Instead, when the essential oil was added (with concentrations ranging from 1 to 5 mg/L) to a culture of E. coli (104 CFU/mL), the lag-time increased from 14.1 to 33.7 h, and the overall heat decreased from 2120 to 2.37 J. The results obtained by the plate count technique were linear with the lag-time (λ), where (λ = -7.3 × log (CFU/mL) + 38.3, R2 = 0.9878). This suggested a lower capacity of E. coli to metabolize the substrate in the presence of the essential oils. The results obtained in this study promote the use of essential oils from wood residues and their use as antimicrobial products.


Asunto(s)
Antiinfecciosos/farmacología , Escherichia coli/efectos de los fármacos , Picea/química , Extractos Vegetales/farmacología , Abies/química , Recuento de Colonia Microbiana/métodos , Aceites Volátiles/farmacología
7.
Crit Rev Food Sci Nutr ; 58(3): 386-404, 2018 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-27246960

RESUMEN

The recovery of high valuable compounds from food waste is becoming a tighten issue in food processing. The large amount of non-edible residues produced by food industries causes pollution, difficulties in the management, and economic loss. The waste produced during the transformation of fruits includes a huge amount of materials such as peels, seeds, and bagasse, whose disposal usually represents a problem. Research over the past 20 years revealed that many food wastes could serve as a source of potentially valuable bioactive compounds, such as antioxidants and vitamins with increasing scientific interest thanks to their beneficial effects on human health. The challenge for the recovery of these compounds is to find the most appropriate and environment friendly extraction technique able to achieve the maximum extraction yield without compromising the stability of the extracted products. Based on this scenario, the aim of the current review is twofold. The first is to give a brief overview of the most important bioactive compounds occurring in fruit wastes. The second is to describe the pro and cons of the most up-to-dated innovative and environment friendly extraction technologies that can be an alternative to the classical solvent extraction procedures for the recovery of valuable compounds from fruit processing. Furthermore, a final section will take into account published findings on the combination of some of these technologies to increase the extracts yields of bioactives.


Asunto(s)
Frutas/química , Extractos Vegetales/química , Antioxidantes/análisis , Manipulación de Alimentos , Humanos , Residuos Industriales/economía
8.
Rapid Commun Mass Spectrom ; 32(16): 1379-1386, 2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-29689633

RESUMEN

RATIONALE: A rapid and non-invasive method for the control of milk by proton transfer reaction mass spectrometry was developed. The approach has the potential to verify the geographic origin and altitude of dairy farms, provided that the cows have been extensively grazed with forage that reflects the botanical composition of the mountain environment. METHODS: Over a 1-month period, a total of 116 samples were analysed by proton transfer reaction mass spectrometry (PTRMS). A multivariate control chart based on the Hotelling T2 statistic was built with PTRMS data and, for comparison, with the chemical parameters obtained by infrared spectroscopy (FTIR, MilkoScan). RESULTS: The headspace analysis of the samples led to characteristic volatile profiles. Farms located in different mountain areas were discriminated by the protonated molecules m/z 45 (acetaldehyde), 59 (acetone), 73 (2-butanone) and 89 (butyric acid, ethyl acetate, pentanol). Milk samples were also discriminated according to the altitude of the farms according to m/z 45, 59, 63 (dimethyl sulfide), 73 (propionic acid, methyl acetate) and 81 (terpenes). CONCLUSIONS: A multivariate control chart based on PTRMS data was used for the quality control of milk. Milk samples from farms located at different mountain areas and altitudes were successfully discriminated.


Asunto(s)
Espectrometría de Masas/métodos , Leche/química , Leche/normas , Compuestos Orgánicos Volátiles/análisis , Altitud , Animales , Bovinos , Industria Lechera , Análisis Multivariante , Protones , Control de Calidad , Reproducibilidad de los Resultados , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/aislamiento & purificación
9.
Rapid Commun Mass Spectrom ; 32(1): 57-62, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28913850

RESUMEN

RATIONALE: The processing of retinyl acetate, a vitamin and biomarker, at high temperatures causes significant decomposition of the compound and thus loss of its activity. The rate of mass loss can be conveniently studied by thermogravimetry (TG). However, this technique generally fails to reveal which compounds have evolved from the compound. In this work we propose a new hyphenation approach to continuously monitor the thermal decomposition of retinyl acetate and follow the evolution of specific volatile organic compounds (VOCs). METHODS: Thermal degradation of retinyl acetate was followed by TG coupled to a direct injection mass spectrometer based on proton transfer reaction mass spectrometry (PTR-MS) to follow continuously the thermal decomposition of retinyl acetate. The results were also compared with those obtained by a second evolved gas analysis system based on the coupling of TG with FTIR. RESULTS: The TG results showed two main mass losses, at 180°C and 350°C. When the PTR-MS instrument was connected to the outlet of the TG instrument, specific fragment ions (m/z 43, 61, 75, 85 and 97) showed characteristic evolution profiles. The first mass loss was mainly associated with the release of acetic acid (m/z 43 and 61), whereas the second mass loss was connected with the degradation of the molecule backbone (m/z 43, 61, 75, 85 and 97). These results were substantially correlated with those achieved by TG coupled with FTIR, although PTR-MS showed superior performance in terms of the qualitative identification of specific fragments and better sensitivity toward complex organic VOCs. CONCLUSIONS: The proposed TG-PTR-MS technique shows a great potential for following in real time the thermal degradation of ingredients such as retinyl acetate and identifying compounds evolved at specific temperatures.


Asunto(s)
Espectrometría de Masas/métodos , Vitamina A/análogos & derivados , Ácido Acético/química , Diterpenos , Calor , Protones , Ésteres de Retinilo , Vitamina A/química , Compuestos Orgánicos Volátiles/química
10.
Molecules ; 21(4): 483, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27077836

RESUMEN

In light of the increasing attention towards "green" solutions to improve food quality, the use of aromatic-enhancing microorganisms offers the advantage to be a natural and sustainable solution that did not negatively influence the list of ingredients. In this study, we characterize, for the first time, volatile organic compounds (VOCs) associated with aromatic bakery yeasts. Three commercial bakery starter cultures, respectively formulated with three Saccharomyces cerevisiae strains, isolated from white wine, red wine, and beer, were monitored by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), a direct injection analytical technique for detecting volatile organic compounds with high sensitivity (VOCs). Two ethanol-related peaks (m/z 65.059 and 75.080) described qualitative differences in fermentative performances. The release of compounds associated to the peaks at m/z 89.059, m/z 103.075, and m/z 117.093, tentatively identified as acetoin and esters, are coherent with claimed flavor properties of the investigated strains. We propose these mass peaks and their related fragments as biomarkers to optimize the aromatic performances of commercial preparations and for the rapid massive screening of yeast collections.


Asunto(s)
Productos Biológicos/química , Aditivos Alimentarios/química , Saccharomyces cerevisiae/química , Compuestos Orgánicos Volátiles/química , Cerveza/microbiología , Productos Biológicos/aislamiento & purificación , Aditivos Alimentarios/aislamiento & purificación , Humanos , Espectrometría de Masas , Compuestos Orgánicos Volátiles/aislamiento & purificación , Vino/microbiología
11.
Rapid Commun Mass Spectrom ; 29(21): 1984-90, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26443397

RESUMEN

RATIONALE: The awareness of customers of the origin of foods has become an important issue. The growing demand for foods that are healthy, safe and of high quality has increased the need for traceability and clear labelling. Thus, this study investigates the capability of C and N stable isotope ratios to determine the geographical origin of several apple varieties grown in northern Italy. METHODS: Four apple varieties (Cripps Pink, Gala, Golden Delicious, Granny Smith) have been sampled in orchards located in the Districts of Bolzano, Ferrara, Verona and Udine (northern Italy). Carbon (δ(13) C) and nitrogen (δ(15) N) isotope values of the whole apple fruits and three sub-fractions (peel, pulp and seed) have been determined simultaneously by isotope ratio mass spectrometry. RESULTS: The δ(13) C and δ(15) N values of apples and apple sub-fractions, such as peel, seed and pulp, were significantly affected by the geographical origin and the fruit variety. The four varieties could be distinguished to a certain extent only within each district. A 99% correct identification of the samples according to their origin was, however, achieved by cross validation with the 'leave-one-out' method. CONCLUSIONS: This study proves the potential of stable isotopes to discriminate the geographical origin of apples grown in orchards located only a few hundreds of kilometres apart. Stable isotopes were also able to discriminate different apple varieties, although only within small geographical areas.


Asunto(s)
Malus/química , Espectrometría de Masas/métodos , Isótopos de Carbono/análisis , Análisis Discriminante , Frutas/química , Frutas/clasificación , Malus/clasificación , Espectrometría de Masas/instrumentación , Análisis Multivariante , Isótopos de Nitrógeno/análisis
12.
J Sci Food Agric ; 95(10): 2088-94, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25244604

RESUMEN

BACKGROUND: Among berries, strawberry fruits are one of the richest natural sources of health-beneficial components such as micronutrients, antioxidants and phytochemicals. Strawberry quality depends greatly upon genotype, environmental factors, cultivation techniques and nutrient supply. This study aimed to assess the influence of phosphorus and iron deficiency on the bioactive compound content in strawberry fruits grown under hydroponic conditions. RESULTS: Different nutrient supplies clearly influenced the qualitative parameters of strawberry fruits. Principal component analysis (PCA) showed that three homogeneous clusters could be identified. The three treatments (control, iron deficiency and phosphorus deficiency) differed especially because of their phenolic compounds and antioxidant potential, the strawberry fruits grown under Fe and P deficiency being richer in pelargonidin-3-glucoside, benzoic acids and flavonols than the control fruits. CONCLUSION: Nutrient deficiency had a positive effect on nutritional parameters of strawberry fruits without impairing fruit yield and quality parameters such as acidity, firmness and total soluble solid content. The shaping of nutrient availability in the growing medium could thus be of help in producing an edible yield with the desired qualitative aspects and nutritional value.


Asunto(s)
Antioxidantes/química , Fragaria/metabolismo , Frutas/química , Hierro/química , Fenoles/química , Fósforo/química , Antocianinas/química , Antocianinas/metabolismo , Antioxidantes/metabolismo , Ácido Benzoico/química , Ácido Benzoico/metabolismo , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Fragaria/crecimiento & desarrollo , Hierro/metabolismo , Fósforo/metabolismo , Factores de Tiempo
13.
Food Chem X ; 21: 101216, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38384689

RESUMEN

Kamut® wheat (Triticum turgidum ssp. turanicum), an ancient, underutilized cereal, offers potential health benefits due to its phenolic compounds. This study aimed to investigate the antioxidant potential of Kamut® wheat's free and bound phenolic extracts using an HPLC system equipped with three detectors. The bound extracts, released after alkaline hydrolysis, exhibited higher total phenolic and flavonoid content compared to the free extracts (p < 0.05). The total antioxidant capacity of bound extracts was six-fold greater than in free extracts (p < 0.05). The main antioxidants in free extracts were tyrosine, phenylalanine, tryptophan, and apigenin. In bound extracts, ferulic acid, its dimers and trimer were present. Kamut® wheat exhibited a source of dietary antioxidants and should be considered a potential ingredient for the development of functional foods. Also, the HPLC-triple detector system is effective for in-depth profiling of antioxidant compounds, paving the way for future research on similar grains.

14.
Talanta ; 270: 125513, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38128278

RESUMEN

Acrolein is a toxic volatile compound derived from oxidative processes, that can be formed in foods during storage and cooking. This study employs proton transfer reaction mass spectrometry (PTR-MS) to detect acrolein precursors in vegetable oils by focusing on the m/z (mass-to-charge ratio) 57. To this purpose, hempseed, sesame, walnut, olive and linseed oils were stored for 168 h at 60 °C in presence of 2,2'-azobis(2-metilpropionitrile) (3 mM) radicals initiator. The evolution of m/z 57 by PTR-MS was also compared with traditional lipid oxidation indicators such as peroxide value, conjugated diene, oxygen consumption and, isothermal calorimetry. The obtained results were explained by the fatty acid composition and antioxidant capacity of the oils. Hempseed fresh oil presented a very low total volatile organic compounds (VOCs) intensity (5.6 kncps). Nonetheless, after storage the intensity increased ∼70 times. A principal component analysis (PCA) confirmed the potential of m/z 57 to differentiate fresh versus rancid hempseed oil sample. During an autoxidation experiment oils high in linolenic and linoleic acids showed higher m/z 57 emissions and shorter induction times: linseed oil (38 h) > walnut oil (47 h) > hempseed oil (80 h). The m/z 57 emission presented a high correlation coefficient with the total VOC signal (r > 0.95), conjugated dienes and headspace oxygen consumption. A PCA analysis showed a complete separation of the fresh oils on the first component (most significant) with the exception of olive oil. Walnut, hempseed and linseed oil were placed on the extreme right nearby total VOCs and m/z 57. The results obtained highlight the potential of PTR-MS for the early detection of oil autoxidation, serving as a quality control tool for potential acrolein precursor emissions, thereby enhancing food safety in the industry.


Asunto(s)
Aceites de Plantas , Compuestos Orgánicos Volátiles , Aceites de Plantas/análisis , Acroleína , Protones , Aceite de Linaza , Espectrometría de Masas , Compuestos Orgánicos Volátiles/análisis
15.
Food Chem ; 456: 140011, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38876065

RESUMEN

This study introduced differential photocalorimetry (DPC) as a method for real-time monitoring of the photo-oxidation kinetics of vegetable oils. DPC measures the heat flow generated during the oxidation of oils upon light exposure. Experiments conducted with stripped linseed oil (SLSO), an oil depleted from its natural antioxidants, showed no induction time (τ). Conversely, spiking SLSO with increasing concentrations of trans-ferulic acid resulted in an induction time (τ) proportional to the antioxidant concentration (R2 = 0.99). A comparative study among different vegetable oils revealed that rice bran oil exhibited the highest resistant to photo-oxidation, followed by corn, soybean, and sunflower oils. The results are discussed in terms of sample oxidizability and antioxidant efficiency (A.E.), and validated through high-performance liquid chromatography with diode array detection (HPLC-DAD). Furthermore, the measured heat flow enabled the determination of the rates of inhibited (Rinh) and uninhibited (Runi) periods, as well as the rate constant of propagation (kp) and inhibition (kinh) reactions.

16.
Food Chem ; 443: 138596, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301566

RESUMEN

Enzymatic glycerolysis is a biotechnological process for structuring vegetable oils. This study investigates the kinetics of glycerolysis of peanut oil and explores the potential of the resulting structured oil to enhance the physical stability of water-in-oil emulsions. Using a 1:1 glycerol-to-oil molar ratio and 4 % lipase B from Candida antarctica as a catalyst, the reaction was conducted at 65 °C with stirring at 400 rpm. Acylglyceride fractions changes were quantified through NMR and DSC. Fat crystal formation was observed using scanning electron microscopy. The results revealed a first-order decay pattern, converting triglycerides into monoacylglycerides and diacylglycerides in less than 16 h. Subsequently, water-in-oil emulsions prepared with glycerolized oil showed augmented stability through multiple light scattering techniques and visual assessment. The structured oils effectively delayed phase separation, highlighting the potential of glycerolysis in developing vegetable oil-based emulsions with improved functional properties and reduced saturated fatty acid content.


Asunto(s)
Aceites de Plantas , Agua , Aceites de Plantas/química , Emulsiones , Aceites , Glicerol/química , Ácidos Grasos/química
17.
Antioxidants (Basel) ; 13(2)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38397820

RESUMEN

This study introduces a kinetic model that significantly improves the interpretation of the oxygen radical absorbance capacity (ORAC) assay. Our model accurately simulates and fits the bleaching kinetics of fluorescein in the presence of various antioxidants, achieving high correlation values (R2 > 0.99) with the experimental data. The fit to the experimental data is achieved by optimizing two rate constants, k5 and k6. The k5 value reflects the reactivity of antioxidants toward scavenging peroxyl radicals, whereas k6 measures the ability of antioxidants to regenerate oxidized fluorescein. These parameters (1) allow the detailed classification of cinnamic acids based on their structure-activity relationships, (2) provide insights into the interaction of alkoxyl radicals with fluorescein, and (3) account for the regeneration of fluorescein radicals by antioxidants. The application of the model to different antioxidants and fruit extracts reveals significant deviations from the results of traditional ORAC tests based on the area under the curve (AUC) approach. For example, lemon juice, rich in 'fast' antioxidants such as ascorbic acid, shows a high k5 value, in contrast to its low AUC values. This finding underscores the limitations of the AUC approach and highlights the advantages of our kinetic model in understanding antioxidative dynamics in food systems. This study presents a comprehensive, quantitative, mechanism-oriented approach to assessing antioxidant reactivity, demonstrating a significant improvement in ORAC assay applications.

18.
Food Chem ; 438: 138048, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38000157

RESUMEN

Cyclopropane fatty acids (CPFAs) serve as indicators of silage feeding, verifying the authenticity of hay milk where silage feeding is forbidden. In this study, the authenticity of hay milk was determined by detecting CPFAs using proton nuclear magnetic resonance (1H NMR) spectroscopy. 245 milk samples were collected in South Tyrol (Italy), categorized as follows: 98 from grass silage-fed cows, 98 from maize silage-fed cows, and 49 authentic hay milk. The limit of detection of CPFAs was 12 µM, corresponding to 70 mg/kg of freeze-dried milk. The CPFAs were absent in all of the hay milk samples, verifying their authenticity. In contrast, 97 % of maize silage and 77 % of grass silage samples exhibited distinct CPFAs signals. These findings were further corroborated by gas chromatography-mass detector (GC-MS) analysis. The study highlights 1H NMR as a robust, and rapid technique for hay milk authentication, supporting alpine dairy production and increasing consumer trust in food authenticity.


Asunto(s)
Leche , Ensilaje , Femenino , Animales , Bovinos , Leche/química , Ensilaje/análisis , Lactancia , Alimentación Animal/análisis , Ácidos Grasos/análisis , Poaceae , Zea mays , Espectroscopía de Resonancia Magnética , Dieta/veterinaria
19.
Sci Rep ; 13(1): 7621, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37164998

RESUMEN

The reaction kinetics of antioxidants with free radicals is crucial to screen their functionality. However, studying antioxidant-radical interactions is very challenging for fast electron-donor substances, such as ascorbic acid, because the reaction ends in a few seconds. Accordingly, this work proposes a rapid and sensitive method for the determination of the absolute rate constant of the reaction between fast antioxidants and DPPH•. The method consists of a stopped-flow spectrophotometric system, which monitors the decay of DPPH• during its interaction with antioxidants. A kinetic-based reaction mechanism fits the experimental data. Kinetic parameters include a second order kinetics (k1) and, depending on the type of antioxidant, a side reaction (k2). Ascorbic acid was the fastest antioxidant (k1 = 21,100 ± 570 M-1 s-1) in comparison with other eleven phenols, showing k1 values from 45 to 3070 M-1 s-1. Compounds like catechin, epicatechin, quercetin, rutin, and tannic, ellagic and syringic acids presented a side reaction (k2 from 15 to 60 M-1 s-1). Among seven fruit juices, strawberry was the fastest, while red plum the slowest. Overall, the proposed kinetic-based DPPH• method is simple, rapid, and suitable for studying the activity and capacity of different molecules, and food samples rich in fast antioxidants, like fruit juices.

20.
Antioxidants (Basel) ; 12(7)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37507993

RESUMEN

In recent years, there has been a growing interest in utilizing natural antioxidants as alternatives to synthetic additives in food products. Apples and apple by-products have gained attention as a potential source of natural antioxidants due to their rich phenolic content. However, the extraction techniques applied for the recovery of phenolic compounds need to be chosen carefully. Studies show that ultrasound-assisted extraction is the most promising technique. High yields of phenolic compounds with antioxidant properties have been obtained by applying ultrasound on both apples and their by-products. Promising results have also been reported for green technologies such as supercritical fluid extraction, especially when a co-solvent is used. Once extracted, recent studies also indicate the feasibility of using these compounds in food products and packaging materials. The present review aims to provide a comprehensive overview of the antioxidant properties of apples and apple by-products, their extraction techniques, and potential applications in food products because of their antioxidant or nutritional properties. The findings reported here highlight the proper utilization of apples and their by-products in food to reduce the detrimental effect on the environment and provide a positive impact on the economy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA