Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
BMC Bioinformatics ; 25(1): 205, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834962

RESUMEN

BACKGROUND: Although RNA-seq data are traditionally used for quantifying gene expression levels, the same data could be useful in an integrated approach to compute genetic distances as well. Challenges to using mRNA sequences for computing genetic distances include the relatively high conservation of coding sequences and the presence of paralogous and, in some species, homeologous genes. RESULTS: We developed a new computational method, RNA-clique, for calculating genetic distances using assembled RNA-seq data and assessed the efficacy of the method using biological and simulated data. The method employs reciprocal BLASTn followed by graph-based filtering to ensure that only orthologous genes are compared. Each vertex in the graph constructed for filtering represents a gene in a specific sample under comparison, and an edge connects a pair of vertices if the genes they represent are best matches for each other in their respective samples. The distance computation is a function of the BLAST alignment statistics and the constructed graph and incorporates only those genes that are present in some complete connected component of this graph. As a biological testbed we used RNA-seq data of tall fescue (Lolium arundinaceum), an allohexaploid plant ( 2 n = 14 Gb ), and bluehead wrasse (Thalassoma bifasciatum), a teleost fish. RNA-clique reliably distinguished individual tall fescue plants by genotype and distinguished bluehead wrasse RNA-seq samples by individual. In tests with simulated RNA-seq data, the ground truth phylogeny was accurately recovered from the computed distances. Moreover, tests of the algorithm parameters indicated that, even with stringent filtering for orthologs, sufficient sequence data were retained for the distance computations. Although comparisons with an alternative method revealed that RNA-clique has relatively high time and memory requirements, the comparisons also showed that RNA-clique's results were at least as reliable as the alternative's for tall fescue data and were much more reliable for the bluehead wrasse data. CONCLUSION: Results of this work indicate that RNA-clique works well as a way of deriving genetic distances from RNA-seq data, thus providing a methodological integration of functional and genetic diversity studies.


Asunto(s)
RNA-Seq , RNA-Seq/métodos , Análisis de Secuencia de ARN/métodos , Biología Computacional/métodos , Algoritmos
2.
Ann Bot ; 133(4): 509-520, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38320313

RESUMEN

BACKGROUND AND AIMS: In the subfamily Poöideae (Poaceae), certain grass species possess anti-herbivore alkaloids synthesized by fungal endophytes that belong to the genus Epichloë (Clavicipitaceae). The protective role of these symbiotic endophytes can vary, depending on alkaloid concentrations within specific plant-endophyte associations and plant parts. METHODS: We conducted a literature review to identify articles containing alkaloid concentration data for various plant parts in six important pasture species, Lolium arundinaceum, Lolium perenne, Lolium pratense, Lolium multiflorum|Lolium rigidum and Festuca rubra, associated with their common endophytes. We considered the alkaloids lolines (1-aminopyrrolizidines), peramine (pyrrolopyrazines), ergovaline (ergot alkaloids) and lolitrem B (indole-diterpenes). While all these alkaloids have shown bioactivity against insect herbivores, ergovaline and lolitrem B are harmful for mammals. KEY RESULTS: Loline alkaloid levels were higher in the perennial grasses L. pratense and L. arundinaceum compared to the annual species L. multiflorum and L. rigidum, and higher in reproductive tissues than in vegetative structures. This is probably due to the greater biomass accumulation in perennial species that can result in higher endophyte mycelial biomass. Peramine concentrations were higher in L. perenne than in L. arundinaceum and not affected by plant part. This can be attributed to the high within-plant mobility of peramine. Ergovaline and lolitrem B, both hydrophobic compounds, were associated with plant parts where fungal mycelium is usually present, and their concentrations were higher in plant reproductive tissues. Only loline alkaloid data were sufficient for below-ground tissue analyses and concentrations were lower than in above-ground parts. CONCLUSIONS: Our study provides a comprehensive synthesis of fungal alkaloid variation across host grasses and plant parts, essential for understanding the endophyte-conferred defence extent. The patterns can be understood by considering endophyte growth within the plant and alkaloid mobility. Our study identifies research gaps, including the limited documentation of alkaloid presence in roots and the need to investigate the influence of different environmental conditions.


Asunto(s)
Alcaloides , Endófitos , Epichloe , Festuca , Lolium , Poliaminas , Alcaloides/metabolismo , Alcaloides/análisis , Endófitos/química , Endófitos/fisiología , Epichloe/química , Epichloe/fisiología , Ergotaminas/metabolismo , Festuca/microbiología , Festuca/fisiología , Herbivoria , Compuestos Heterocíclicos con 2 Anillos , Alcaloides Indólicos/metabolismo , Lolium/microbiología , Lolium/fisiología , Micotoxinas , Defensa de la Planta contra la Herbivoria , Poaceae/microbiología , Poaceae/metabolismo , Simbiosis
3.
Proc Natl Acad Sci U S A ; 116(51): 25614-25623, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31801877

RESUMEN

Nonribosomal peptide synthetases (NRPSs) generate the core peptide scaffolds of many natural products. These include small cyclic dipeptides such as the insect feeding deterrent peramine, which is a pyrrolopyrazine (PPZ) produced by grass-endophytic Epichloë fungi. Biosynthesis of peramine is catalyzed by the 2-module NRPS, PpzA-1, which has a C-terminal reductase (R) domain that is required for reductive release and cyclization of the NRPS-tethered dipeptidyl-thioester intermediate. However, some PpzA variants lack this R domain due to insertion of a transposable element into the 3' end of ppzA We demonstrate here that these truncated PpzA variants utilize nonenzymatic cyclization of the dipeptidyl thioester to a 2,5-diketopiperazine (DKP) to synthesize a range of novel PPZ products. Truncation of the R domain is sufficient to subfunctionalize PpzA-1 into a dedicated DKP synthetase, exemplified by the truncated variant, PpzA-2, which has also evolved altered substrate specificity and reduced N-methyltransferase activity relative to PpzA-1. Further allelic diversity has been generated by recombination-mediated domain shuffling between ppzA-1 and ppzA-2, resulting in the ppzA-3 and ppzA-4 alleles, each of which encodes synthesis of a unique PPZ metabolite. This research establishes that efficient NRPS-catalyzed DKP biosynthesis can occur in vivo through nonenzymatic dipeptidyl cyclization and presents a remarkably clean example of NRPS evolution through recombinant exchange of functionally divergent domains. This work highlights that allelic variants of a single NRPS can result in a surprising level of secondary metabolite diversity comparable to that observed for some gene clusters.


Asunto(s)
Péptido Sintasas , Pirazinas , Ciclización/genética , Barajamiento de ADN , Dicetopiperazinas/química , Epichloe/enzimología , Epichloe/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Péptido Sintasas/química , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Pirazinas/química , Pirazinas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
PLoS Genet ; 14(10): e1007467, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30356280

RESUMEN

Structural features of genomes, including the three-dimensional arrangement of DNA in the nucleus, are increasingly seen as key contributors to the regulation of gene expression. However, studies on how genome structure and nuclear organisation influence transcription have so far been limited to a handful of model species. This narrow focus limits our ability to draw general conclusions about the ways in which three-dimensional structures are encoded, and to integrate information from three-dimensional data to address a broader gamut of biological questions. Here, we generate a complete and gapless genome sequence for the filamentous fungus, Epichloë festucae. We use Hi-C data to examine the three-dimensional organisation of the genome, and RNA-seq data to investigate how Epichloë genome structure contributes to the suite of transcriptional changes needed to maintain symbiotic relationships with the grass host. Our results reveal a genome in which very repeat-rich blocks of DNA with discrete boundaries are interspersed by gene-rich sequences that are almost repeat-free. In contrast to other species reported to date, the three-dimensional structure of the genome is anchored by these repeat blocks, which act to isolate transcription in neighbouring gene-rich regions. Genes that are differentially expressed in planta are enriched near the boundaries of these repeat-rich blocks, suggesting that their three-dimensional orientation partly encodes and regulates the symbiotic relationship formed by this organism.


Asunto(s)
ADN de Hongos/genética , Epichloe/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Secuencia Rica en At/genética , ADN de Hongos/química , Proteínas Fúngicas/genética , Secuencia Rica en GC/genética , Perfilación de la Expresión Génica/métodos , Hifa/genética , Análisis de Secuencia de ADN/métodos , Simbiosis/genética
5.
Mol Plant Microbe Interact ; 32(2): 194-207, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30145935

RESUMEN

Epichloë species are fungal symbionts (endophytes) of cool-season grasses that transmit vertically via inflorescence primordia (IP), ovaries (OV), and ultimately, embryos. Epichloë coenophiala, an endophyte of tall fescue (Schedonorus arundinaceus), provides multiple protective benefits to the grass. We conducted transcriptome analysis of the tall fescue-E. coenophiala symbiosis, comparing IP, OV, vegetative pseudostems (PS), and the lemma and palea (LP) (bracts) of the young floret. Transcriptomes of host OV and PS exhibited almost no significant differences attributable to endophyte presence or absence. Comparison of endophyte gene expression in different plant parts revealed numerous differentially expressed genes (DEGs). The 150 endophyte DEGs significantly higher in PS over OV included genes for alkaloid biosynthesis and sugar or amino acid transport. The 277 endophyte DEGs significantly higher in OV over PS included genes for protein chaperones (including most heat-shock proteins), trehalose synthesis complex, a bax inhibitor-1 protein homolog, the CLC chloride ion channel, catalase, and superoxide dismutase. Similar trends were apparent in the Brachypodium sylvaticum-Epichloë sylvatica symbiosis. Gene expression profiles in tall fescue IP and LP indicated that the endophyte transcriptome shift began early in host floral development. We discuss possible roles of the endophyte DEGs in colonization of reproductive grass tissues.


Asunto(s)
Epichloe , Festuca , Simbiosis , Transcriptoma , Endófitos/genética , Endófitos/fisiología , Epichloe/genética , Epichloe/fisiología , Festuca/genética , Festuca/crecimiento & desarrollo , Festuca/microbiología , Interacciones Huésped-Parásitos/genética
6.
Biochemistry ; 57(14): 2074-2083, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29537853

RESUMEN

The core of the loline family of insecticidal alkaloids is the bicyclic pyrrolizidine unit with an additional strained ether bridge between carbons 2 and 7. Previously reported genetic and in vivo biochemical analyses showed that the presumptive iron- and 2-oxoglutarate-dependent (Fe/2OG) oxygenase, LolO, is required for installation of the ether bridge upon the pathway intermediate, 1- exo-acetamidopyrrolizidine (AcAP). Here we show that LolO is, in fact, solely responsible for this biosynthetic four-electron oxidation. In sequential 2OG- and O2-consuming steps, LolO removes hydrogens from C2 and C7 of AcAP to form both carbon-oxygen bonds in N-acetylnorloline (NANL), the precursor to all other lolines. When supplied with substoichiometric 2OG, LolO only hydroxylates AcAP. At higher 2OG:AcAP ratios, the enzyme further processes the alcohol to the tricyclic NANL. Characterization of the alcohol intermediate by mass spectrometry and nuclear magnetic resonance spectroscopy shows that it is 2- endo-hydroxy-1- exo-acetamidopyrrolizidine (2- endo-OH-AcAP). Kinetic and spectroscopic analyses of reactions with site-specifically deuteriated AcAP substrates confirm that the C2-H bond is cleaved first and that the responsible intermediate is, as expected, an FeIV-oxo (ferryl) complex. Analyses of the loline products from cultures fed with stereospecifically deuteriated AcAP precursors, proline and aspartic acid, establish that LolO removes the endo hydrogens from C2 and C7 and forms both new C-O bonds with retention of configuration. These findings delineate the pathway to an important class of natural insecticides and lay the foundation for mechanistic dissection of the chemically challenging oxacyclization reaction.


Asunto(s)
Alcaloides/química , Epichloe/enzimología , Proteínas Fúngicas/química , Hierro/química , Ácidos Cetoglutáricos/química , Oxigenasas/química
7.
Mol Plant Microbe Interact ; 30(2): 138-149, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28027026

RESUMEN

Increased resilience of pasture grasses mediated by fungal Epichloë endophytes is crucial to pastoral industries. The underlying mechanisms are only partially understood and likely involve very different activities of the endophyte in different plant tissues and responses of the plant to these. We analyzed the transcriptomes of Epichloë festucae and its host, Lolium perenne, in host tissues of different function and developmental stages. The endophyte contributed approximately 10× more to the transcriptomes than to the biomass of infected tissues. Proliferating mycelium in growing host tissues highly expressed genes involved in hyphal growth. Nonproliferating mycelium in mature plant tissues, transcriptionally equally active, highly expressed genes involved in synthesizing antiherbivore compounds. Transcripts from the latter accounted for 4% of fungal transcripts. Endophyte infection systemically but moderately increased transcription of L. perenne genes with roles in hormone biosynthesis and perception as well as stress and pathogen resistance while reducing expression of genes involved in photosynthesis. There was a good correlation between transcriptome-based observations and physiological observations. Our data indicate that the fitness-enhancing effects of the endophyte are based both on its biosynthetic activities, predominantly in mature host tissues, and also on systemic alteration of the host's hormonal responses and induction of stress response genes. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


Asunto(s)
Endófitos/fisiología , Ambiente , Epichloe/fisiología , Interacciones Huésped-Patógeno , Lolium/inmunología , Lolium/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , ADN de Plantas/metabolismo , Endófitos/genética , Epichloe/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Fúngicos , Herbivoria , Hifa/genética , Lolium/crecimiento & desarrollo , Sistemas de Lectura Abierta/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Simbiosis/genética , Transcripción Genética , Transcriptoma/genética
8.
New Phytol ; 213(1): 324-337, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27477008

RESUMEN

Tall fescue (Lolium arundinaceum) is one of the primary forage and turf grasses in temperate regions of the world. A number of favourable characteristics of tall fescue are enhanced by its seed-transmissible fungal symbiont (endophyte) Epichloë coenophiala. Our approach was to assemble the tall fescue transcriptome, then identify differentially expressed genes (DEGs) for endophyte-symbiotic (E+) vs endophyte-free (E-) clones in leaf blades, pseudostems, crowns and roots. RNA-seq reads were used to construct a tall fescue reference transcriptome and compare gene expression profiles. Over all tissues examined, 478 DEGs were identified between the E+ and E- clones for at least one tissue (more than two-fold; P < 0.0001, 238 E+ > E- and 240 E- > E+), although no genes were differentially expressed in all four tissues. Gene ontology (GO) terms, GO:0010200 (response to chitin), GO:0002679 (respiratory burst during defence response) and GO:0035556 (intracellular signal transduction) were significantly overrepresented among 25 E- > E+ DEGs in leaf blade, and a number of other DEGs were associated with defence and abiotic response. In particular, endophyte effects on various WRKY transcription factors may have implications for symbiotic stability, endophyte distribution in the plant, or defence against pathogens.


Asunto(s)
Endófitos/fisiología , Epichloe/fisiología , Lolium/genética , Lolium/microbiología , Transcriptoma/genética , Regulación de la Expresión Génica de las Plantas , Análisis de Componente Principal , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
Phytopathology ; 107(5): 504-518, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28168931

RESUMEN

Ergot alkaloids are highly diverse in structure, exhibit diverse effects on animals, and are produced by diverse fungi in the phylum Ascomycota, including pathogens and mutualistic symbionts of plants. These mycotoxins are best known from the fungal family Clavicipitaceae and are named for the ergot fungi that, through millennia, have contaminated grains and caused mass poisonings, with effects ranging from dry gangrene to convulsions and death. However, they are also useful sources of pharmaceuticals for a variety of medical purposes. More than a half-century of research has brought us extensive knowledge of ergot-alkaloid biosynthetic pathways from common early steps to several taxon-specific branches. Furthermore, a recent flurry of genome sequencing has revealed the genomic processes underlying ergot-alkaloid diversification. In this review, we discuss the evolution of ergot-alkaloid biosynthesis genes and gene clusters, including roles of gene recruitment, duplication and neofunctionalization, as well as gene loss, in diversifying structures of clavines, lysergic acid amides, and complex ergopeptines. Also reviewed are prospects for manipulating ergot-alkaloid profiles to enhance suitability of endophytes for forage grasses.


Asunto(s)
Claviceps/genética , Alcaloides de Claviceps/genética , Evolución Molecular , Hypocreales/genética , Enfermedades de las Plantas/microbiología , Poaceae/microbiología , Vías Biosintéticas , Claviceps/química , Claviceps/metabolismo , Endófitos , Alcaloides de Claviceps/química , Alcaloides de Claviceps/metabolismo , Genómica , Hypocreales/química , Hypocreales/metabolismo , Familia de Multigenes , Micotoxinas/química , Micotoxinas/genética , Micotoxinas/metabolismo , Simbiosis
10.
Plant Mol Biol ; 90(6): 665-75, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26542393

RESUMEN

The closely linked fitness of the Epichloë symbiont and the host grass is presumed to align the coevolution of the species towards specialization and mutually beneficial cooperation. Ecological observations demonstrating that Epichloë-grass symbioses can modulate grassland ecosystems via both above- and belowground ecosystem processes support this. In many cases the detected ecological importance of Epichloë species is directly or indirectly linked to defensive mutualism attributable to alkaloids of fungal-origin. Now, modern genetic and molecular techniques enable the precise studies on evolutionary origin of endophytic Epichloë species, their coevolution with host grasses and identification the genetic variation that explains phenotypic diversity in ecologically relevant characteristics of Epichloë-grass associations. Here we briefly review the most recent findings in these areas of research using the present knowledge of the genetic variation that explains the biosynthetic pathways driving the diversity of alkaloids produced by the endophyte. These findings underscore the importance of genetic interplay between the fungus and the host in shaping their coevolution and ecological role in both natural grass ecosystems, and in the agricultural arena.


Asunto(s)
Endófitos/fisiología , Epichloe/fisiología , Poaceae/microbiología , Alcaloides/genética , Alcaloides/metabolismo , Evolución Biológica , Ecosistema , Epichloe/genética , Variación Genética , Filogenia , Poaceae/genética , Simbiosis
11.
PLoS Genet ; 9(2): e1003323, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23468653

RESUMEN

The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some-including the infamous ergot alkaloids-have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.


Asunto(s)
Alcaloides , Claviceps , Epichloe , Alcaloides de Claviceps , Selección Genética , Alcaloides/química , Alcaloides/clasificación , Alcaloides/genética , Alcaloides/metabolismo , Claviceps/genética , Claviceps/metabolismo , Claviceps/patogenicidad , Epichloe/genética , Epichloe/metabolismo , Epichloe/patogenicidad , Alcaloides de Claviceps/genética , Alcaloides de Claviceps/metabolismo , Regulación Fúngica de la Expresión Génica , Hypocreales/genética , Hypocreales/metabolismo , Neotyphodium , Poaceae/genética , Poaceae/metabolismo , Poaceae/parasitología , Simbiosis/genética
12.
Bioinformatics ; 30(16): 2280-7, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24764459

RESUMEN

MOTIVATION: Although the majority of gene histories found in a clade of organisms are expected to be generated by a common process (e.g. the coalescent process), it is well known that numerous other coexisting processes (e.g. horizontal gene transfers, gene duplication and subsequent neofunctionalization) will cause some genes to exhibit a history distinct from those of the majority of genes. Such 'outlying' gene trees are considered to be biologically interesting, and identifying these genes has become an important problem in phylogenetics. RESULTS: We propose and implement kdetrees, a non-parametric method for estimating distributions of phylogenetic trees, with the goal of identifying trees that are significantly different from the rest of the trees in the sample. Our method compares favorably with a similar recently published method, featuring an improvement of one polynomial order of computational complexity (to quadratic in the number of trees analyzed), with simulation studies suggesting only a small penalty to classification accuracy. Application of kdetrees to a set of Apicomplexa genes identified several unreliable sequence alignments that had escaped previous detection, as well as a gene independently reported as a possible case of horizontal gene transfer. We also analyze a set of Epichloë genes, fungi symbiotic with grasses, successfully identifying a contrived instance of paralogy. AVAILABILITY AND IMPLEMENTATION: Our method for estimating tree distributions and identifying outlying trees is implemented as the R package kdetrees and is available for download from CRAN.


Asunto(s)
Filogenia , Algoritmos , Apicomplexa/genética , Epichloe/genética , Transferencia de Gen Horizontal , Genes , Alineación de Secuencia , Programas Informáticos , Estadísticas no Paramétricas
13.
Appl Environ Microbiol ; 81(8): 2797-807, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25681180

RESUMEN

Peramine is an insect-feeding deterrent produced by Epichloë species in symbiotic association with C3 grasses. The perA gene responsible for peramine synthesis encodes a two-module nonribosomal peptide synthetase. Alleles of perA are found in most Epichloë species; however, peramine is not produced by many perA-containing Epichloë isolates. The genetic basis of these peramine-negative chemotypes is often unknown. Using PCR and DNA sequencing, we analyzed the perA genes from 72 Epichloë isolates and identified causative mutations of perA null alleles. We found nonfunctional perA-ΔR* alleles, which contain a transposon-associated deletion of the perA region encoding the C-terminal reductase domain, are widespread within the Epichloë genus and represent a prevalent mutation found in nonhybrid species. Disparate phylogenies of adjacent A2 and T2 domains indicated that the deletion of the reductase domain (R*) likely occurred once and early in the evolution of the genus, and subsequently there have been several recombinations between those domains. A number of novel point, deletion, and insertion mutations responsible for abolishing peramine production in full-length perA alleles were also identified. The regions encoding the first and second adenylation domains (A1 and A2, respectively) were common sites for such mutations. Using this information, a method was developed to predict peramine chemotypes by combining PCR product size polymorphism analysis with sequencing of the perA adenylation domains.


Asunto(s)
Epichloe/fisiología , Proteínas Fúngicas/genética , Mutación , Péptido Sintasas/genética , Poaceae/microbiología , Metabolismo Secundario/genética , Epichloe/genética , Proteínas Fúngicas/metabolismo , Compuestos Heterocíclicos con 2 Anillos/química , Datos de Secuencia Molecular , Péptido Sintasas/metabolismo , Filogenia , Poliaminas/química , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Simbiosis
14.
Mycologia ; 107(4): 863-73, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25911697

RESUMEN

Achnatherum inebrians, colloquially known as drunken horse grass, is associated with livestock toxicity in northern China. Epichloë gansuensis (Eg) was described from endophyte isolates from A. inebrians in Sunan County, Gansu Province, whereas a morphologically distinct variety, E. gansuensis var. inebrians (Ei), was described based on two isolates from A. inebrians seeds collected in Urumqi County, Xinjiang Province. Genome sequencing and alkaloid analyses also distinguish these taxa; the Ei isolates produce neurotropic lysergic acid amides (ergot alkaloids), and an Eg isolate produces paxilline (an indole-diterpene alkaloid). To better elucidate the taxonomic diversity of Epichloë spp. symbiotic with A. inebrians, we surveyed eight populations in Xinjiang, Gansu and Inner Mongolia provinces of China and analyzed their genotypes by multiplex PCR for alkaloid biosynthesis genes and mating-type genes. Genotypes consistent with Ei were present in all eight populations, of which they dominated seven. The Ei isolates were all mating type A and tested positive for the ergot alkaloid gene, dmaW. In contrast Eg isolates were all mating type B and had the indole-diterpene gene, idtG. The genome was sequenced from an Ei isolate from seeds collected in Xiahe County, Gansu, and compared to that of the varietal ex type isolate from Urumqi. Alkaloid genes and four different housekeeping genes were nearly identical between the two sequenced Ei isolates and were distinct from a sequenced Eg isolate. Phylogenetic analysis placed Ei, Eg and Epichloë sibirica into respective subclades of a clade that emanated from the base of the Epichloë phylogeny. Given its chemotypic, genotypic, morphological and phylogenetic distinctiveness, its widespread occurrence in rangelands of northern China, and its importance in livestock toxicity, we propose raising Ei to species rank as Epichloë inebrians.


Asunto(s)
Endófitos/aislamiento & purificación , Epichloe/aislamiento & purificación , Poaceae/microbiología , Simbiosis , Alcaloides/metabolismo , Biodiversidad , China , Endófitos/clasificación , Endófitos/genética , Endófitos/fisiología , Epichloe/clasificación , Epichloe/genética , Epichloe/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Datos de Secuencia Molecular , Filogenia , Poaceae/clasificación
15.
Mycologia ; 106(2): 202-15, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24459125

RESUMEN

Nomenclatural rule changes in the International Code of Nomenclature for algae, fungi and plants, adopted at the 18th International Botanical Congress in Melbourne, Australia, in 2011, provide for a single name to be used for each fungal species. The anamorphs of Epichloë species have been classified in genus Neotyphodium, the form genus that also includes most asexual Epichloë descendants. A nomenclatural realignment of this monophyletic group into one genus would enhance a broader understanding of the relationships and common features of these grass endophytes. Based on the principle of priority of publication we propose to classify all members of this clade in the genus Epichloë. We have reexamined classification of several described Epichloë and Neotyphodium species and varieties and propose new combinations and states. In this treatment we have accepted 43 unique taxa in Epichloë, including distinct species, subspecies, and varieties. We exclude from Epichloë the two taxa Neotyphodium starrii, as nomen dubium, and Neotyphodium chilense, as an unrelated taxon.


Asunto(s)
Endófitos/clasificación , Epichloe/clasificación , Neotyphodium/clasificación , Poaceae/microbiología , Endófitos/genética , Endófitos/fisiología , Epichloe/genética , Epichloe/fisiología , Neotyphodium/genética , Neotyphodium/fisiología , Filogenia
16.
Mycologia ; 106(2): 339-52, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24782501

RESUMEN

In this work we performed morphological and molecular phylogenetic analyses (based on sequences of calmodulin M [calM], translation-elongation factor 1-α [tefA] and ß-tubulin [tubB] genes) to characterize the diversity of Epichloë endophytes in Bromus setifolius and Phleum alpinum. The phylogenies obtained from the three genes were congruent and allowed differentiation of three lineages of endophytes that also presented morphological differences. One lineage corresponds to the previously described species Epichloë tembladerae, which is present in a wide range of native grasses from Argentina including B. setifolius and P. alpinum. Another genotype isolated only from B. setifolius is a non-hybrid endophyte, a rare condition for the South American Epichloë endophytes. Isolates of this genotype, described herein as a new variety, Epichloë typhina var. aonikenkana, presented waxy colonies at maturity and a low production of conidia. The third lineage, exclusively found in isolates from P. alpinum, is a hybrid between E. typhina and a common ancestor of E. amarillans and E. baconii. Isolates of this lineage produce abundant conidia that are variable in shape and size. Based on its unique phylogenetic position and morphology, we propose the new species, Epichloë cabralii for this lineage. The new combinations Epichloë tembladerae and E. pampeana also are proposed for the previously described Neotyphodium tembladerae and Neotyphodium pampeanum species.


Asunto(s)
Epichloe/aislamiento & purificación , Neotyphodium/aislamiento & purificación , Poaceae/microbiología , Biodiversidad , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Epichloe/clasificación , Epichloe/genética , Epichloe/crecimiento & desarrollo , Datos de Secuencia Molecular , Neotyphodium/clasificación , Neotyphodium/genética , Neotyphodium/crecimiento & desarrollo , Filogenia , Poaceae/fisiología , Esporas Fúngicas/clasificación , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/aislamiento & purificación , Simbiosis
17.
J Agric Food Chem ; 72(4): 2397-2409, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38230662

RESUMEN

Endophytic fungi can benefit the host plant and increase the plant resistance. Now, there is no in-depth study of how Alternaria oxytropis (A. oxytropis) is enhancing the ability of inhibiting pathogenic fungi in Oxytropis ochrocephala (O. ochrocephala). In this study, the fungal community and metabolites associated with endophyte-infected (EI) and endophyte-free (EF) O. ochrocephala were compared by multiomics. The fungal community indicated that there was more A. oxytropis, less phylum Ascomycota, and less genera Leptosphaeria, Colletotrichum, and Comoclathris in the EI group. As metabolic biomarkers, the levels of swainsonine and apigenin-7-O-glucoside-4-O-rutinoside were significantly increased in the EI group. Through in vitro validation experiments, swainsonine and apigenin-7-O-glucoside-4-O-rutinoside can dramatically suppress the growth of pathogenic fungi Leptosphaeria sclerotioides and Colletotrichum americae-borealis by increasing the level of oxidative stress. This work suggested that O. ochrocephala containing A. oxytropis could increase the resistance to fungal diseases by markedly enhancing the content of metabolites inhibiting pathogenic fungi.


Asunto(s)
Ascomicetos , Oxytropis , Swainsonina/metabolismo , Oxytropis/metabolismo , Oxytropis/microbiología , Apigenina/metabolismo , Multiómica , Alternaria/metabolismo , Hongos/metabolismo , Ascomicetos/metabolismo , Endófitos/genética , Endófitos/metabolismo , Glucósidos/metabolismo
18.
mSphere ; 9(6): e0011124, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38809064

RESUMEN

Asexual replication in the apicomplexan Sarcocystis neurona involves two main developmental stages: the motile extracellular merozoite and the sessile intracellular schizont. Merozoites invade host cells and transform into schizonts that undergo replication via endopolygeny to form multiple (64) daughter merozoites that are invasive to new host cells. Given that the capabilities of the merozoite vary significantly from the schizont, the patterns of transcript levels throughout the asexual lifecycle were determined and compared in this study. RNA-Seq data were generated from extracellular merozoites and four intracellular schizont development time points. Of the 6,938 genes annotated in the S. neurona genome, 6,784 were identified in the transcriptome. Of these, 4,111 genes exhibited significant differential expression between the merozoite and at least one schizont development time point. Transcript levels were significantly higher for 2,338 genes in the merozoite and 1,773 genes in the schizont stages. Included in this list were genes encoding the secretory pathogenesis determinants (SPDs), which encompass the surface antigen and SAG-related sequence (SAG/SRS) and the secretory organelle proteins of the invasive zoite stage (micronemes, rhoptries, and dense granules). As anticipated, many of the S. neurona SPD gene transcripts were abundant in merozoites. However, several SPD transcripts were elevated in intracellular schizonts, suggesting roles unrelated to host cell invasion and the initial establishment of the intracellular niche. The hypothetical genes that are potentially unique to the genus Sarcocystis are of particular interest. Their conserved expression patterns are instructive for future investigations into the possible functions of these putative Sarcocystis-unique genes. IMPORTANCE: The genus Sarcocystis is an expansive clade within the Apicomplexa, with the species S. neurona being an important cause of neurological disease in horses. Research to decipher the biology of S. neurona and its host-pathogen interactions can be enhanced by gene expression data. This study has identified conserved apicomplexan orthologs in S. neurona, putative Sarcocystis-unique genes, and gene transcripts abundant in the merozoite and schizont stages. Importantly, we have identified distinct clusters of genes with transcript levels peaking during different intracellular schizont development time points, reflecting active gene expression changes across endopolygeny. Each cluster also has subsets of transcripts with unknown functions, and investigation of these seemingly Sarcocystis-unique transcripts will provide insights into the interesting biology of this parasite genus.


Asunto(s)
Merozoítos , Sarcocystis , Sarcocystis/genética , Sarcocystis/crecimiento & desarrollo , Merozoítos/crecimiento & desarrollo , Esquizontes/genética , Esquizontes/crecimiento & desarrollo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Reproducción Asexuada/genética , Animales , Sarcocistosis/parasitología , Sarcocistosis/veterinaria , Estadios del Ciclo de Vida/genética
19.
BMC Plant Biol ; 13: 127, 2013 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-24015904

RESUMEN

BACKGROUND: The endophytic fungus, Neotyphodium coenophialum, can enhance drought tolerance of its host grass, tall fescue. To investigate endophyte effects on plant responses to acute water deficit stress, we did comprehensive profiling of plant metabolite levels in both shoot and root tissues of genetically identical clone pairs of tall fescue with endophyte (E+) and without endophyte (E-) in response to direct water deficit stress. The E- clones were generated by treating E+ plants with fungicide and selectively propagating single tillers. In time course studies on the E+ and E- clones, water was withheld from 0 to 5 days, during which levels of free sugars, sugar alcohols, and amino acids were determined, as were levels of some major fungal metabolites. RESULTS: After 2-3 days of withholding water, survival and tillering of re-watered plants was significantly greater for E+ than E- clones. Within two to three days of withholding water, significant endophyte effects on metabolites manifested as higher levels of free glucose, fructose, trehalose, sugar alcohols, proline and glutamic acid in shoots and roots. The fungal metabolites, mannitol and loline alkaloids, also significantly increased with water deficit. CONCLUSIONS: Our results suggest that symbiotic N. coenophialum aids in survival and recovery of tall fescue plants from water deficit, and acts in part by inducing rapid accumulation of these compatible solutes soon after imposition of stress.


Asunto(s)
Deshidratación , Festuca/metabolismo , Festuca/fisiología , Fructosa/metabolismo , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Prolina/metabolismo , Alcoholes del Azúcar/metabolismo , Simbiosis/fisiología , Trehalosa/metabolismo
20.
Mycologia ; 115(5): 614-629, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37463242

RESUMEN

Bipolaris gigantea (= Drechslera gigantea) causes Bipolaris leaf spot (BLS), a devastating and widespread disease on industrial hemp (Cannabis sativa). An investigation of relationships of isolates from hemp and other plants indicated variation in ploidy that has not previously been reported for Bipolaris. Isolates were obtained from BLS lesions on hemp and nearby weeds in 11 Kentucky counties and were similar to each other in morphology and growth characteristics. In total, 23 isolates were analyzed by multilocus phylogenetics, of which seven were also chosen for whole genome shotgun sequencing. Genes for RNA polymerase II subunit 2 (RPB2), translation elongation factor 1-α (TEF1), and mating type (MAT1) indicated that 13 of the isolates were haploid with only a single allele each of RPB2 and TEF1 and either the MAT1-1 or MAT1-2 idiomorph, whereas 10 were apparently "heteroploid" with two alleles each of RPB2 and TEF1 and both MAT1 idiomorphs. Haploids all had identical RPB2 alleles except for a 1-bp difference in two isolates, identical TEF1 alleles, and (if present) identical MAT1-2 alleles. Those alleles were also present in each heteroploid along with either of two related but distinct alleles for each gene. In contrast, haploids and heteroploids shared allelic variation of MAT1-1. In total, four haploid and two heteroploid genotypes were identified. Genome sequence data assembled to 30-32 Mb for each of four haploid isolates, but 10-31 Mb larger sizes for each of three heteroploids depending on sequencing platform and assembly program. The haploids and heteroploids caused similar disease on hemp.


Asunto(s)
Ascomicetos , Cannabis , Cannabis/genética , Bipolaris/genética , Haploidia , Ascomicetos/genética , Genes del Tipo Sexual de los Hongos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA