Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Nature ; 623(7989): 949-955, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38030777

RESUMEN

Pyridinium electrolytes are promising candidates for flow-battery-based energy storage1-4. However, the mechanisms underlying both their charge-discharge processes and overall cycling stability remain poorly understood. Here we probe the redox behaviour of pyridinium electrolytes under representative flow battery conditions, offering insights into air tolerance of batteries containing these electrolytes while providing a universal physico-chemical descriptor of their reversibility. Leveraging a synthetic library of extended bispyridinium compounds, we track their performance over a wide range of potentials and identify the singlet-triplet free energy gap as a descriptor that successfully predicts the onset of previously unidentified capacity fade mechanisms. Using coupled operando nuclear magnetic resonance and electron paramagnetic resonance spectroscopies5,6, we explain the redox behaviour of these electrolytes and determine the presence of two distinct regimes (narrow and wide energy gaps) of electrochemical performance. In both regimes, we tie capacity fade to the formation of free radical species, and further show that π-dimerization plays a decisive role in suppressing reactivity between these radicals and trace impurities such as dissolved oxygen. Our findings stand in direct contrast to prevailing views surrounding the role of π-dimers in redox flow batteries1,4,7-11 and enable us to efficiently mitigate capacity fade from oxygen even on prolonged (days) exposure to air. These insights pave the way to new electrolyte systems, in which reactivity of reduced species is controlled by their propensity for intra- and intermolecular pairing of free radicals, enabling operation in air.

2.
Proc Natl Acad Sci U S A ; 119(49): e2212497119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36454753

RESUMEN

Nanoconfined few-molecule water clusters are invaluable systems to study fundamental aspects of hydrogen bonding. Unfortunately, most experiments on water clusters must be performed at cryogenic temperatures. Probing water clusters in noncryogenic systems is however crucial to understand the behavior of confined water in atmospheric or biological settings, but such systems usually require either complex synthesis and/or introduce many confounding external bonds to the clusters. Here, we show that combining Raman spectroscopy with the molecular nanocapsule cucurbituril is a powerful technique to sequester and analyze water clusters in ambient conditions. We observe sharp peaks in vibrational spectra arising from a single rigid confined water dimer. The high resolution and rich information in these vibrational spectra allow us to track specific isotopic exchanges inside the water dimer, verified with density-functional theory and kinetic population modeling. We showcase the versatility of such molecular nanocapsules by tracking water cluster vibrations through systematic changes in confinement size, in temperatures up to 120° C, and in their chemical environment.


Asunto(s)
Nanocápsulas , Vibración , Agua , Polímeros , Espectrometría Raman
3.
J Am Chem Soc ; 146(19): 12877-12882, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38710014

RESUMEN

The use of single-molecule microscopy is introduced as a method to quantify the photophysical properties of supramolecular complexes rapidly at ultra low concentrations (<1 nM), previously inaccessible. Using a model supramolecular system based on the host-guest complexation of cucurbit[n]uril (CB[n]) macrocycles together with a fluorescent guest (Ant910Me), we probe fluorescent CB[n] host-guest complexes in the single molecule regime. We show quantification and differentiation of host-guest photophysics and stoichiometries, both in aqueous media and noninvasively in hydrogel, by thresholding detected photons. This methodology has wide reaching implications in aiding the design of next-generation materials with programmed and controlled properties.

4.
Nat Mater ; 21(1): 103-109, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34819661

RESUMEN

Supramolecular polymer networks are non-covalently crosslinked soft materials that exhibit unique mechanical features such as self-healing, high toughness and stretchability. Previous studies have focused on optimizing such properties using fast-dissociative crosslinks (that is, for an aqueous system, dissociation rate constant kd > 10 s-1). Herein, we describe non-covalent crosslinkers with slow, tuneable dissociation kinetics (kd < 1 s-1) that enable high compressibility to supramolecular polymer networks. The resultant glass-like supramolecular networks have compressive strengths up to 100 MPa with no fracture, even when compressed at 93% strain over 12 cycles of compression and relaxation. Notably, these networks show a fast, room-temperature self-recovery (< 120 s), which may be useful for the design of high-performance soft materials. Retarding the dissociation kinetics of non-covalent crosslinks through structural control enables access of such glass-like supramolecular materials, holding substantial promise in applications including soft robotics, tissue engineering and wearable bioelectronics.


Asunto(s)
Matriz Extracelular , Polímeros , Hidrogeles/química , Polímeros/química , Ingeniería de Tejidos , Agua
5.
Proc Natl Acad Sci U S A ; 117(26): 14819-14826, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32541027

RESUMEN

Plasmonic nanostructures can focus light far below the diffraction limit, and the nearly thousandfold field enhancements obtained routinely enable few- and single-molecule detection. However, for processes happening on the molecular scale to be tracked with any relevant time resolution, the emission strengths need to be well beyond what current plasmonic devices provide. Here, we develop hybrid nanostructures incorporating both refractive and plasmonic optics, by creating SiO2 nanospheres fused to plasmonic nanojunctions. Drastic improvements in Raman efficiencies are consistently achieved, with (single-wavelength) emissions reaching 107 counts⋅mW-1⋅s-1 and 5 × 105 counts∙mW-1∙s-1∙molecule-1, for enhancement factors >1011 We demonstrate that such high efficiencies indeed enable tracking of single gold atoms and molecules with 17-µs time resolution, more than a thousandfold improvement over conventional high-performance plasmonic devices. Moreover, the obtained (integrated) megahertz count rates rival (even exceed) those of luminescent sources such as single-dye molecules and quantum dots, without bleaching or blinking.

6.
J Am Chem Soc ; 144(19): 8474-8479, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35535953

RESUMEN

Peptide dimerization is ubiquitous in natural protein conjugates and artificial self-assemblies. A major challenge in artificial systems remains achieving quantitative peptide heterodimerization, critical for next-generation biomolecular purification and formulation of therapeutics. Here, we employ a synthetic host to simultaneously encapsulate an aromatic and a noncanonical l-perfluorophenylalanine-containing peptide through embedded polar-π interactions, constructing an unprecedented series of heteropeptide dimers. To demonstrate the utility, this heteropeptide dimerization strategy was applied toward on-resin recognition of N-terminal aromatic residues in peptides as well as insulin, both exhibiting high recycling efficiency (>95%). This research unveils a generic approach to exploit quantitative heteropeptide dimers for the design of supramolecular (bio)systems.


Asunto(s)
Oligopéptidos , Proteínas , Dimerización , Oligopéptidos/química , Péptidos/química
7.
Nature ; 535(7610): 127-30, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27296227

RESUMEN

Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter1, 2, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host­guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light­matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules­matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds.

8.
Molecules ; 27(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35408595

RESUMEN

The encapsulation of proteins into core-shell structures is a widely utilised strategy for controlling protein stability, delivery and release. Despite the recognised utility of these microstructures, however, core-shell fabrication routes are often too costly or poorly scalable to allow for industrial translation. Furthermore, many scalable routes rely upon emulsion-techniques implicating denaturing or environmentally harmful organic solvents. Herein, we investigate core-shell protein encapsulation through single-feed, aqueous spray drying: a cheap, industrially ubiquitous particle-formation technology in the absence of organic solvents. We show that an excipient's preference for the surface of the spray dried particle is well-predicted by its hydrodynamic diameter (Dh) under relevant feed buffer conditions (pH and ionic strength) and that the predictive power of Dh is improved when measured at the spray dryer outlet temperature compared to room temperature (R2 = 0.64 vs. 0.59). Lastly, we leverage these findings to propose an adaptable design framework for fabricating core-shell protein encapsulates by single-feed aqueous spray drying.


Asunto(s)
Proteínas , Agua , Emulsiones , Tamaño de la Partícula , Polvos , Solventes , Temperatura , Agua/química
9.
Angew Chem Int Ed Engl ; 61(34): e202206562, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35723924

RESUMEN

To unlock the widespread use of block copolymers as photonic pigments, there is an urgent need to consider their environmental impact (cf. microplastic pollution). Here we show how an inverse photonic glass architecture can enable the use of biocompatible bottlebrush block copolymers (BBCPs), which otherwise lack the refractive index contrast needed for a strong photonic response. A library of photonic pigments is produced from poly(norbornene-graft-polycaprolactone)-block-poly(norbornene-graft-polyethylene glycol), with the color tuned via either the BBCP molecular weight or the processing temperature upon microparticle fabrication. The structure-optic relationship between the 3D porous morphology of the microparticles and their complex optical response is revealed by both an analytical scattering model and 3D finite-difference time domain (FDTD) simulations. Combined, this allows for strategies to enhance the color purity to be proposed and realized with our biocompatible BBCP system.


Asunto(s)
Fotones , Plásticos , Norbornanos , Polietilenglicoles , Polímeros
10.
J Am Chem Soc ; 143(17): 6323-6327, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33860670

RESUMEN

Controlling the spatial and temporal behavior of peptide segments is essential in the fabrication of functional peptide-based materials and nanostructures. To achieve a desired structure, complex sequence design is often required, coupled with the inclusion of unnatural amino acids or synthetic modifications. Herein, we investigate the structural properties of 1:1 inclusion complexes between specific oligopeptides and cucurbit[8]uril (CB[8]), inducing the formation of turns, and by alteration of the peptide sequence, tunable structural chirality. We also explore extended peptide sequence binding with CB[8], demonstrating a simple approach to construct a peptide hairpin.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/química , Péptidos/química , Secuencia de Aminoácidos , Dicroismo Circular , Transferencia Resonante de Energía de Fluorescencia , Modelos Moleculares , Pliegue de Proteína , Estereoisomerismo
11.
J Am Chem Soc ; 143(34): 13557-13572, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34357768

RESUMEN

Metal-organic framework nanoparticles (nanoMOFs) have been widely studied in biomedical applications. Although substantial efforts have been devoted to the development of biocompatible approaches, the requirement of tedious synthetic steps, toxic reagents, and limitations on the shelf life of nanoparticles in solution are still significant barriers to their translation to clinical use. In this work, we propose a new postsynthetic modification of nanoMOFs with phosphate-functionalized methoxy polyethylene glycol (mPEG-PO3) groups which, when combined with lyophilization, leads to the formation of redispersible solid materials. This approach can serve as a facile and general formulation method for the storage of bare or drug-loaded nanoMOFs. The obtained PEGylated nanoMOFs show stable hydrodynamic diameters, improved colloidal stability, and delayed drug-release kinetics compared to their parent nanoMOFs. Ex situ characterization and computational studies reveal that PEGylation of PCN-222 proceeds in a two-step fashion. Most importantly, the lyophilized, PEGylated nanoMOFs can be completely redispersed in water, avoiding common aggregation issues that have limited the use of MOFs in the biomedical field to the wet form-a critical limitation for their translation to clinical use as these materials can now be stored as dried samples. The in vitro performance of the addition of mPEG-PO3 was confirmed by the improved intracellular stability and delayed drug-release capability, including lower cytotoxicity compared with that of the bare nanoMOFs. Furthermore, z-stack confocal microscopy images reveal the colocalization of bare and PEGylated nanoMOFs. This research highlights a facile PEGylation method with mPEG-PO3, providing new insights into the design of promising nanocarriers for drug delivery.


Asunto(s)
Portadores de Fármacos/química , Estructuras Metalorgánicas/química , Polietilenglicoles/química , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/farmacología , Portadores de Fármacos/síntesis química , Liberación de Fármacos , Células HeLa , Humanos , Simulación de Dinámica Molecular , Nanopartículas/química , Fosfatos/química
12.
Phys Rev Lett ; 126(4): 047402, 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33576645

RESUMEN

Charge carriers trapped at localized surface defects play a crucial role in quantum dot (QD) photophysics. Surface traps offer longer lifetimes than band-edge emission, expanding the potential of QDs as nanoscale light-emitting excitons and qubits. Here, we demonstrate that a nonradiative plasmon mode drives the transfer from two-photon-excited excitons to trap states. In plasmonic cavities, trap emission dominates while the band-edge recombination is completely suppressed. The induced pathways for excitonic recombination not only shed light on the fundamental interactions of excitonic spins, but also open new avenues in manipulating QD emission, for optoelectronics and nanophotonics applications.

13.
J Am Chem Soc ; 142(16): 7356-7361, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32248683

RESUMEN

Phenyl-perfluorophenyl polar-π interactions have been revisited for the design and fabrication of functional supramolecular systems. The relatively weak associative interactions (ΔG ≈ -1.0 kcal/mol) have limited their use in aqueous self-assembly to date. Herein, we propose a strategy to strengthen phenyl-perfluorophenyl polar-π interactions by encapsulation within a synthetic host, thus increasing the binding affinity to ΔG= -15.5 kcal/mol upon formation of heteroternary complexes through social self-sorting. These heteroternary complexes were used as dynamic, yet strong, cross-linkers in the fabrication of supramolecular gels, which exhibited excellent viscoelasticity, stretchability, self-recovery, self-healing, and energy dissipation. This work unveils a general approach to exploit host-enhanced polar-π interactions in the design of robust aqueous supramolecular systems.

14.
Langmuir ; 36(4): 911-918, 2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-31927931

RESUMEN

Today, colloids are widely employed in various products from creams and coatings to electronics. The ability to control their chemical, optical, or electronic features by controlling their size and shape explains why these materials are so widely preferred. Nevertheless, altering some of these properties may also lead to some undesired side effects, one of which is an increase in optical scattering upon concentration. Here, we address this strong scattering issue in films made of binary colloidal suspensions. In particular, we focus on raspberry-type polymeric particles made of a spherical polystyrene core decorated by small hemispherical domains of acrylate with an overall positive charge, which display an unusual stability against aggregation in aqueous solutions. Their solid films display a brilliant red color due to Bragg scattering but appear completely white on account of strong scattering otherwise. To suppress the scattering and induce transparency, we prepared films by hybridizing them with oppositely charged PS particles with a size similar to that of the bumps on the raspberries. We report that the smaller PS particles prevent raspberry particle aggregation in solid films and suppress scattering by decreasing the spatial variation of the refractive index inside the film. We believe that the results presented here provide a simple strategy to suppress strong scattering of larger particles to be used in optical coatings.

15.
Phys Chem Chem Phys ; 22(26): 14976-14982, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32588846

RESUMEN

Machine learning is a valuable tool in the development of chemical technologies but its applications into supramolecular chemistry have been limited. Here, the utility of kernel-based support vector machine learning using density functional theory calculations as training data is evaluated when used to predict equilibrium binding coefficients of small molecules with cucurbit[7]uril (CB[7]). We find that utilising SVMs may confer some predictive ability. This algorithm was then used to predict the binding of drugs TAK-580 and selumetinib. The algorithm did predict strong binding for TAK-580 and poor binding for selumetinib, and these results were experimentally validated. It was discovered that the larger homologue cucurbit[8]uril (CB[8]) is partial to selumetinib, suggesting an opportunity for tunable release by introducing different concentrations of CB[7] or CB[8] into a hydrogel depot. We qualitatively demonstrated that these drugs may have utility in combination against gliomas. Finally, mass transfer simulations show CB[7] can independently tune the release of TAK-580 without affecting selumetinib. This work gives specific evidence that a machine learning approach to recognition of small molecules by macrocycles has merit and reinforces the view that machine learning may prove valuable in the development of drug delivery systems and supramolecular chemistry more broadly.


Asunto(s)
Bencimidazoles/química , Hidrocarburos Aromáticos con Puentes/química , Compuestos Heterocíclicos con 3 Anillos/química , Imidazoles/química , Teoría Funcional de la Densidad , Modelos Químicos , Máquina de Vectores de Soporte
16.
Proc Natl Acad Sci U S A ; 114(31): 8163-8168, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28696304

RESUMEN

Inspired by biological systems, we report a supramolecular polymer-colloidal hydrogel (SPCH) composed of 98 wt % water that can be readily drawn into uniform ([Formula: see text]6-[Formula: see text]m thick) "supramolecular fibers" at room temperature. Functionalized polymer-grafted silica nanoparticles, a semicrystalline hydroxyethyl cellulose derivative, and cucurbit[8]uril undergo aqueous self-assembly at multiple length scales to form the SPCH facilitated by host-guest interactions at the molecular level and nanofibril formation at colloidal-length scale. The fibers exhibit a unique combination of stiffness and high damping capacity (60-70%), the latter exceeding that of even biological silks and cellulose-based viscose rayon. The remarkable damping performance of the hierarchically structured fibers is proposed to arise from the complex combination and interactions of "hard" and "soft" phases within the SPCH and its constituents. SPCH represents a class of hybrid supramolecular composites, opening a window into fiber technology through low-energy manufacturing.

17.
Nano Lett ; 19(3): 2051-2058, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30726095

RESUMEN

The resonance wavelength of a coupled plasmonic system is extremely sensitive to the distance between its metallic surfaces, resulting in "plasmon rulers". We explore this behavior in the subnanometer regime using self-assembled monolayers of bis-phthalocyanine molecules in a nanoparticle-on-mirror (NPoM) construct. These allow unprecedented subangstrom control over spacer thickness via choice of metal center, in a gap-size regime at the quantum-mechanical limit of plasmonic enhancement. A dramatic shift in the coupled plasmon resonance is observed as the gap size is varied from 0.39 to 0.41 nm. Existing theoretical models are unable to account for the observed spectral tuning, which requires inclusion of the quantum-classical interface, emphasizing the need for new treatments of light at the subnanoscale.

18.
Angew Chem Int Ed Engl ; 59(37): 15963-15967, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32495447

RESUMEN

The challenge of quantitatively forming self-assembled heterodimers without other equilibrium by-products is overcome through self-sorting favored by the introduction of designed shape-complementary moieties. Such a supramolecular strategy based on cucurbit[8]uril-directed dimerization is further applied to generate hetero-chromophore dimers quantitatively, leading to efficient energy transfer (>85 %) upon photoexcitation.

19.
J Am Chem Soc ; 141(36): 14021-14025, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31422657

RESUMEN

The binding of imidazolium salts to cucurbit[8]uril, CB[8], triggers a stepwise self-assembly process with semiflexible polymer chains and crystalline nanostructures as early- and late-stage species, respectively. In such a process, which involves the crystallization of the host-guest complexes, the guest plays a critical role in directing self-assembly toward desirable morphologies. These include platelet-like aggregates and two-dimensional (2D) fibers, which, moreover, exhibit viscoelastic and lyotropic properties. Our observations provide a deeper understanding of the self-assembly of CB[8] complexes, with fundamental implications in the design of functional 2D systems and crystalline materials.

20.
Faraday Discuss ; 214: 455-463, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30865195

RESUMEN

External-stimuli controlled reversible formation of radical species is of great interest for synthetic and supramolecular chemistry, molecular machinery, as well as emerging technologies ranging from (photo)catalysis and photovoltaics to nanomedicine. Here we show a novel hybrid colloidal system for light-driven reversible reduction of chemical species that, on their own, do not respond to light. This is achieved by the unique combination of photo-sensitive plasmonic aggregates and temperature-responsive inorganic species generating radicals that can be finally accepted and stabilised by non-photo-responsive organic molecules. In this system Au nanoparticles (NPs) self-assembled via sub-nm precise molecular spacers (cucurbit[n]urils) interact strongly with visible light to locally accelerate the decomposition of dithionite species (S2O42-) close to the NP interfaces. This light-driven process leads to the generation of inorganic radicals whose electrons can then be reversibly picked up by small organic acceptors, such as the methyl viologen molecules (MV2+) used here. During light-triggered plasmon- and heat-assisted generation of radicals, the S2O42- species work as a chemical 'fuel' linking photo-induced processes at the NP interfaces with redox chemistry in the surrounding water environment. By incorporating MV2+ as a Raman-active reporter molecule, the resulting optically-controlled redox processes can be followed in real-time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA