Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 178(3): 521-535.e23, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31348885

RESUMEN

Intracellular accumulation of misfolded proteins causes toxic proteinopathies, diseases without targeted therapies. Mucin 1 kidney disease (MKD) results from a frameshift mutation in the MUC1 gene (MUC1-fs). Here, we show that MKD is a toxic proteinopathy. Intracellular MUC1-fs accumulation activated the ATF6 unfolded protein response (UPR) branch. We identified BRD4780, a small molecule that clears MUC1-fs from patient cells, from kidneys of knockin mice and from patient kidney organoids. MUC1-fs is trapped in TMED9 cargo receptor-containing vesicles of the early secretory pathway. BRD4780 binds TMED9, releases MUC1-fs, and re-routes it for lysosomal degradation, an effect phenocopied by TMED9 deletion. Our findings reveal BRD4780 as a promising lead for the treatment of MKD and other toxic proteinopathies. Generally, we elucidate a novel mechanism for the entrapment of misfolded proteins by cargo receptors and a strategy for their release and anterograde trafficking to the lysosome.


Asunto(s)
Benzamidas/metabolismo , Compuestos Bicíclicos con Puentes/farmacología , Heptanos/farmacología , Lisosomas/efectos de los fármacos , Proteínas de Transporte Vesicular/metabolismo , Factor de Transcripción Activador 6/metabolismo , Animales , Benzamidas/química , Benzamidas/farmacología , Compuestos Bicíclicos con Puentes/uso terapéutico , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Mutación del Sistema de Lectura , Heptanos/uso terapéutico , Humanos , Receptores de Imidazolina/antagonistas & inhibidores , Receptores de Imidazolina/genética , Receptores de Imidazolina/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Riñón/citología , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Lisosomas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Mucina-1/química , Mucina-1/genética , Mucina-1/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , Proteínas de Transporte Vesicular/química
2.
Am J Transplant ; 23(5): 597-607, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36868514

RESUMEN

The growing accessibility and falling costs of genetic sequencing techniques has expanded the utilization of genetic testing in clinical practice. For living kidney donation, genetic evaluation has been increasingly used to identify genetic kidney disease in potential candidates, especially in those of younger ages. However, genetic testing on asymptomatic living kidney donors remains fraught with many challenges and uncertainties. Not all transplant practitioners are aware of the limitations of genetic testing, are comfortable with selecting testing methods, comprehending test results, or providing counsel, and many do not have access to a renal genetic counselor or a clinical geneticist. Although genetic testing can be a valuable tool in living kidney donor evaluation, its overall benefit in donor evaluation has not been demonstrated and it can also lead to confusion, inappropriate donor exclusion, or misleading reassurance. Until more published data become available, this practice resource should provide guidance for centers and transplant practitioners on the responsible use of genetic testing in the evaluation of living kidney donor candidates.


Asunto(s)
Trasplante de Riñón , Humanos , Donadores Vivos , Selección de Donante , Recolección de Tejidos y Órganos
3.
J Am Soc Nephrol ; 32(2): 307-322, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33443052

RESUMEN

BACKGROUND: FSGS caused by mutations in INF2 is characterized by a podocytopathy with mistrafficked nephrin, an essential component of the slit diaphragm. Because INF2 is a formin-type actin nucleator, research has focused on its actin-regulating function, providing an important but incomplete insight into how these mutations lead to podocytopathy. A yeast two-hybridization screen identified the interaction between INF2 and the dynein transport complex, suggesting a newly recognized role of INF2 in regulating dynein-mediated vesicular trafficking in podocytes. METHODS: Live cell and quantitative imaging, fluorescent and surface biotinylation-based trafficking assays in cultured podocytes, and a new puromycin aminoglycoside nephropathy model of INF2 transgenic mice were used to demonstrate altered dynein-mediated trafficking of nephrin in INF2 associated podocytopathy. RESULTS: Pathogenic INF2 mutations disrupt an interaction of INF2 with dynein light chain 1, a key dynein component. The best-studied mutation, R218Q, diverts dynein-mediated postendocytic sorting of nephrin from recycling endosomes to lysosomes for degradation. Antagonizing dynein-mediated transport can rescue this effect. Augmented dynein-mediated trafficking and degradation of nephrin underlies puromycin aminoglycoside-induced podocytopathy and FSGS in vivo. CONCLUSIONS: INF2 mutations enhance dynein-mediated trafficking of nephrin to proteolytic pathways, diminishing its recycling required for maintaining slit diaphragm integrity. The recognition that dysregulated dynein-mediated transport of nephrin in R218Q knockin podocytes opens an avenue for developing targeted therapy for INF2-mediated FSGS.


Asunto(s)
Dineínas Citoplasmáticas/metabolismo , Forminas/genética , Glomeruloesclerosis Focal y Segmentaria/etiología , Proteínas de la Membrana/metabolismo , Mutación/genética , Podocitos/patología , Animales , Técnicas de Cultivo de Célula , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Ratones , Podocitos/metabolismo , Transporte de Proteínas
4.
Kidney Int ; 99(5): 1065-1067, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33892856

RESUMEN

Genetics contributes significantly to the development of kidney diseases. In the case of glomerular diseases such as focal segmental glomerulosclerosis, over a dozen genes involved in maintaining and regulating the actin cytoskeleton of podocytes have been implicated. A new study adds the atypical myosin, MYO9A, to that list using a combination of human and mouse genetics, suggesting a link to enhanced RhoA activity. Unraveling the growing web of actin regulators remains a key challenge to understanding podocytopathies.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Podocitos , Citoesqueleto de Actina , Animales , Proteínas Activadoras de GTPasa , Glomeruloesclerosis Focal y Segmentaria/genética , Ratones , Miosinas/genética
5.
J Am Soc Nephrol ; 31(2): 374-391, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31924668

RESUMEN

BACKGROUND: Mutations in the gene encoding inverted formin-2 (INF2), a member of the formin family of actin regulatory proteins, are among the most common causes of autosomal dominant FSGS. INF2 is regulated by interaction between its N-terminal diaphanous inhibitory domain (DID) and its C-terminal diaphanous autoregulatory domain (DAD). INF2 also modulates activity of other formins, such as the mDIA subfamily, and promotes stable microtubule assembly. Why the disease-causing mutations are restricted to the N terminus and how they cause human disease has been unclear. METHODS: We examined INF2 isoforms present in podocytes and evaluated INF2 cleavage as an explanation for immunoblot findings. We evaluated the expression of INF2 N- and C-terminal fragments in human kidney disease conditions. We also investigated the localization and functions of the DID-containing N-terminal fragment in podocytes and assessed whether the FSGS-associated R218Q mutation impairs INF2 cleavage or the function of the N-fragment. RESULTS: The INF2-CAAX isoform is the predominant isoform in podocytes. INF2 is proteolytically cleaved, a process mediated by cathepsin proteases, liberating the N-terminal DID to function independently. Although the N-terminal region normally localizes to podocyte foot processes, it does not do so in the presence of FSGS-associated INF2 mutations. The C-terminal fragment localizes to the cell body irrespective of INF2 mutations. In podocytes, the N-fragment localizes to the plasma membrane, binds mDIA1, and promotes cell spreading in a cleavage-dependent way. The disease-associated R218Q mutation impairs these N-fragment functions but not INF2 cleavage. CONCLUSIONS: INF2 is cleaved into an N-terminal DID-containing fragment and a C-terminal DAD-containing fragment. Cleavage allows the N-terminal fragment to function independently and helps explain the clustering of FSGS-associated mutations.


Asunto(s)
Forminas/genética , Glomeruloesclerosis Focal y Segmentaria/genética , Mutación , Fragmentos de Péptidos/fisiología , Podocitos/fisiología , Animales , Catepsinas/fisiología , Células Cultivadas , Forminas/fisiología , Glomeruloesclerosis Focal y Segmentaria/etiología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Isoformas de Proteínas
6.
J Am Soc Nephrol ; 31(7): 1479-1495, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32540856

RESUMEN

BACKGROUND: Genetic mutations in α-actinin-4 (ACTN4)-an important actin crosslinking cytoskeletal protein that provides structural support for kidney podocytes-have been linked to proteinuric glomerulosclerosis in humans. However, the effect of post-translational modifications of ACTN4 on podocyte integrity and kidney function is not known. METHODS: Using mass spectrometry, we found that ACTN4 is phosphorylated at serine (S) 159 in human podocytes. We used phosphomimetic and nonphosphorylatable ACTN4 to comprehensively study the effects of this phosphorylation in vitro and in vivo. We conducted x-ray crystallography, F-actin binding and bundling assays, and immunofluorescence staining to evaluate F-actin alignment. Microfluidic organ-on-a-chip technology was used to assess for detachment of podocytes simultaneously exposed to fluid flow and cyclic strain. We then used CRISPR/Cas9 to generate mouse models and assessed for renal injury by measuring albuminuria and examining kidney histology. We also performed targeted mass spectrometry to determine whether high extracellular glucose or TGF-ß levels increase phosphorylation of ACTN4. RESULTS: Compared with the wild type ACTN4, phosphomimetic ACTN4 demonstrated increased binding and bundling activity with F-actin in vitro. Phosphomimetic Actn4 mouse podocytes exhibited more spatially correlated F-actin alignment and a higher rate of detachment under mechanical stress. Phosphomimetic Actn4 mice developed proteinuria and glomerulosclerosis after subtotal nephrectomy. Moreover, we found that exposure to high extracellular glucose or TGF-ß stimulates phosphorylation of ACTN4 at S159 in podocytes. CONCLUSIONS: These findings suggest that increased phosphorylation of ACTN4 at S159 leads to biochemical, cellular, and renal pathology that is similar to pathology resulting from human disease-causing mutations in ACTN4. ACTN4 may mediate podocyte injury as a consequence of both genetic mutations and signaling events that modulate phosphorylation.


Asunto(s)
Actinina/metabolismo , Albuminuria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Podocitos/metabolismo , Procesamiento Proteico-Postraduccional , Actinina/genética , Actinas/metabolismo , Actinas/ultraestructura , Albuminuria/etiología , Albuminuria/patología , Animales , Células Cultivadas , Femenino , Glomeruloesclerosis Focal y Segmentaria/etiología , Glomeruloesclerosis Focal y Segmentaria/patología , Glucosa/farmacología , Humanos , Dispositivos Laboratorio en un Chip , Masculino , Ratones , Nefrectomía/efectos adversos , Peptidomiméticos , Fosforilación/efectos de los fármacos , Unión Proteica , Serina/metabolismo , Factor de Crecimiento Transformador beta/farmacología
7.
J Biol Chem ; 294(34): 12655-12669, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31266804

RESUMEN

Transient receptor potential cation channel subfamily C member 6 (TRPC6) is a widely expressed ion channel. Gain-of-function mutations in the human TRPC6 channel cause autosomal-dominant focal segmental glomerulosclerosis, but the molecular components involved in disease development remain unclear. Here, we found that overexpression of gain-of-function TRPC6 channel variants is cytotoxic in cultured cells. Exploiting this phenotype in a genome-wide CRISPR/Cas screen for genes whose inactivation rescues cells from TRPC6-associated cytotoxicity, we identified several proteins essential for TRPC6 protein expression, including the endoplasmic reticulum (ER) membrane protein complex transmembrane insertase. We also identified transmembrane protein 208 (TMEM208), a putative component of a signal recognition particle-independent (SND) ER protein-targeting pathway, as being necessary for expression of TRPC6 and several other ion channels and transporters. TRPC6 expression was also diminished by loss of the previously uncharacterized WD repeat domain 83 opposite strand (WDR83OS), which interacted with both TRPC6 and TMEM208. Additionally enriched among the screen hits were genes involved in N-linked protein glycosylation. Deletion of the mannosyl (α-1,3-)-glycoprotein ß-1,2-N-acetylglucosaminyltransferase (MGAT1), necessary for the generation of complex N-linked glycans, abrogated TRPC6 gain-of-function variant-mediated Ca2+ influx and extracellular signal-regulated kinase activation in HEK cells, but failed to diminish cytotoxicity in cultured podocytes. However, mutating the two TRPC6 N-glycosylation sites abrogated the cytotoxicity of mutant TRPC6 and reduced its surface expression. These results expand the targets of TMEM208-mediated ER translocation to include multipass transmembrane proteins and suggest that TRPC6 N-glycosylation plays multiple roles in modulating channel trafficking and activity.


Asunto(s)
Membrana Celular/metabolismo , Canal Catiónico TRPC6/metabolismo , Sistemas CRISPR-Cas/genética , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Mutación con Ganancia de Función , Glicosilación/efectos de los fármacos , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Unión Proteica/efectos de los fármacos , ARN Guía de Kinetoplastida/metabolismo
8.
Am J Physiol Renal Physiol ; 318(2): F518-F530, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31904283

RESUMEN

Mucin-type O-linked glycosylation, a posttranslational modification affecting the stability and biophysical characteristics of proteins, requires C1GalT1 (T synthase) and its obligate, X-linked chaperone Cosmc. Hypomorphic C1GalT1 mutations cause renal failure via not yet established mechanisms. We hypothesize that impaired Cosmc-dependent O-glycosylation in podocytes is sufficient to cause disease. Podocyte-specific Cosmc knockout mice were generated and phenotyped to test this hypothesis. Female heterozygous mice displaying mosaic inactivation of Cosmc in podocytes due to random X-linked inactivation were also examined. Mice with podocyte-specific Cosmc deletion develop profound albuminuria, foot process effacement, glomerular sclerosis, progressive renal failure, and impaired survival. Glomerular transcriptome analysis reveals early changes in cell adhesion, extracellular matrix organization, and chemokine-mediated signaling pathways, coupled with podocyte loss. Expression of the O-glycoprotein podoplanin was lost, while Tn antigen, representing immature O-glycans, was most abundantly found on podocalyxin. In contrast to hemizygous male and homozygous female animals, heterozygous female mosaic animals developed only mild albuminuria, focal foot process effacement, and nonprogressive kidney disease. Ultrastructurally, Cosmc-deficient podocytes formed Tn antigen-positive foot processes interdigitating with those of normal podocytes but not with other Cosmc-deficient cells. This suggests a cell nonautonomous mechanism for mucin-type O-glycoproteins in maintaining podocyte function. In summary, our findings demonstrated an essential and likely cell nonautonomous role for mucin-type O-glycosylation for podocyte function.


Asunto(s)
Albuminuria/metabolismo , Chaperonas Moleculares/metabolismo , Mucinas/metabolismo , Podocitos/metabolismo , Insuficiencia Renal/metabolismo , Albuminuria/genética , Albuminuria/patología , Albuminuria/fisiopatología , Animales , Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Células Cultivadas , Femenino , Predisposición Genética a la Enfermedad , Glicosilación , Heterocigoto , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Chaperonas Moleculares/genética , Mosaicismo , Fenotipo , Podocitos/ultraestructura , Insuficiencia Renal/genética , Insuficiencia Renal/patología , Insuficiencia Renal/fisiopatología , Factores Sexuales , Sialoglicoproteínas/metabolismo
10.
Proc Natl Acad Sci U S A ; 113(4): 830-7, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26699492

RESUMEN

Two specific genetic variants of the apolipoprotein L1 (APOL1) gene are responsible for the high rate of kidney disease in people of recent African ancestry. Expression in cultured cells of these APOL1 risk variants, commonly referred to as G1 and G2, results in significant cytotoxicity. The underlying mechanism of this cytotoxicity is poorly understood. We hypothesized that this cytotoxicity is mediated by APOL1 risk variant-induced dysregulation of intracellular signaling relevant for cell survival. To test this hypothesis, we conditionally expressed WT human APOL1 (G0), the APOL1 G1 variant, or the APOL1 G2 variant in human embryonic kidney cells (T-REx-293) using a tetracycline-mediated (Tet-On) system. We found that expression of either G1 or G2 APOL1 variants increased apparent cell swelling and cell death compared with G0-expressing cells. These manifestations of cytotoxicity were preceded by G1 or G2 APOL1-induced net efflux of intracellular potassium as measured by X-ray fluorescence, resulting in the activation of stress-activated protein kinases (SAPKs), p38 MAPK, and JNK. Prevention of net K(+) efflux inhibited activation of these SAPKs by APOL1 G1 or G2. Furthermore, inhibition of SAPK signaling and inhibition of net K(+) efflux abrogated cytotoxicity associated with expression of APOL1 risk variants. These findings in cell culture raise the possibility that nephrotoxicity of APOL1 risk variants may be mediated by APOL1 risk variant-induced net loss of intracellular K(+) and subsequent induction of stress-activated protein kinase pathways.


Asunto(s)
Apolipoproteínas/genética , Transporte Iónico/genética , Enfermedades Renales/genética , Lipoproteínas HDL/genética , Proteínas Quinasas Activadas por Mitógenos/fisiología , Mutación Missense , Potasio/metabolismo , Sustitución de Aminoácidos , Apolipoproteína L1 , Apolipoproteínas/fisiología , Población Negra/genética , Muerte Celular , Tamaño de la Célula , Receptor gp130 de Citocinas/biosíntesis , Receptor gp130 de Citocinas/genética , Progresión de la Enfermedad , Activación Enzimática , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Enfermedades Renales/etnología , Lipoproteínas HDL/fisiología , Sistema de Señalización de MAP Quinasas , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/metabolismo , Riesgo , Factor de Transcripción STAT3/metabolismo , Transfección
11.
Kidney Int ; 91(4): 773-775, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28314576

RESUMEN

Fibrosis is a common response to injury but can also perpetuate tissue dysfunction. Transient receptor potential C6 (TRPC6) is implicated in cardiac and skin healing via regulation of myofibroblast differentiation. Wu et al. now demonstrate a role for TRPC6 in renal fibrosis, via a mechanism that also relies on TRPC3 and is antagonized by soluble klotho. Modulation of TRPC3/6 activity may provide a means of dampening the fibrotic response involved in chronic kidney disease progression.


Asunto(s)
Fibrosis , Canales Catiónicos TRPC , Diferenciación Celular , Humanos , Insuficiencia Renal Crónica , Canal Catiónico TRPC6
12.
Kidney Int ; 90(2): 363-372, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27350175

RESUMEN

Mutations in the INF2 (inverted formin 2) gene, encoding a diaphanous formin family protein that regulates actin cytoskeleton dynamics, cause human focal segmental glomerulosclerosis (FSGS). INF2 interacts directly with certain other mammalian diaphanous formin proteins (mDia) that function as RhoA effector molecules. FSGS-causing INF2 mutations impair these interactions and disrupt the ability of INF2 to regulate Rho/Dia-mediated actin dynamics in vitro. However, the precise mechanisms by which INF2 regulates and INF2 mutations impair glomerular structure and function remain unknown. Here, we characterize an Inf2 R218Q point-mutant (knockin) mouse to help answer these questions. Knockin mice have no significant renal pathology or proteinuria at baseline despite diminished INF2 protein levels. INF2 mutant podocytes do show impaired reversal of protamine sulfate-induced foot process effacement by heparin sulfate perfusion. This is associated with persistent podocyte cytoplasmic aggregation, nephrin phosphorylation, and nephrin and podocin mislocalization, as well as impaired recovery of mDia membrane localization. These changes were partially mimicked in podocyte outgrowth cultures, in which podocytes from knockin mice show altered cellular protrusions compared to those from wild-type mice. Thus, in mice, normal INF2 function is not required for glomerular development but normal INF2 is required for regulation of the actin-based behaviors necessary for response to and/or recovery from injury.


Asunto(s)
Lesión Renal Aguda/metabolismo , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Proteínas de Microfilamentos/genética , Podocitos/metabolismo , Actinas/metabolismo , Lesión Renal Aguda/inducido químicamente , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Forminas , Heparina/farmacología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de Microfilamentos/metabolismo , Microscopía Electrónica de Transmisión , Fenotipo , Fosforilación , Podocitos/efectos de los fármacos , Podocitos/patología , Podocitos/ultraestructura , Mutación Puntual , Protaminas/toxicidad , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA
13.
J Biol Chem ; 288(25): 18407-20, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23645677

RESUMEN

Gain-of-function mutations in the canonical transient receptor potential 6 (TRPC6) gene are a cause of autosomal dominant focal segmental glomerulosclerosis (FSGS). The mechanisms whereby abnormal TRPC6 activity results in proteinuria remain unknown. The ERK1/2 MAPKs are activated in glomeruli and podocytes in several proteinuric disease models. We therefore examined whether FSGS-associated mutations in TRPC6 result in activation of these kinases. In 293T cells and cultured podocytes, overexpression of gain-of-function TRPC6 mutants resulted in increased ERK1/2 phosphorylation, an effect dependent upon channel function. Pharmacologic inhibitor studies implicated several signaling mediators, including calmodulin and calcineurin, supporting the importance of TRPC6-mediated calcium influx in this process. Through medium transfer experiments, we uncovered two distinct mechanisms for ERK activation by mutant TRPC6, a cell-autonomous, EGF receptor-independent mechanism and a non-cell-autonomous mechanism involving metalloprotease-mediated release of a presumed EGF receptor ligand. The inhibitors KN-92 and H89 were able to block both pathways in mutant TRPC6 expressing cells as well as the prolonged elevation of intracellular calcium levels upon carbachol stimulation seen in these cells. However, these effects appear to be independent of their effects on calcium/calmodulin-dependent protein kinase II and PKA, respectively. Phosphorylation of Thr-70, Ser-282, and Tyr-31/285 were not necessary for ERK activation by mutant TRPC6, although a phosphomimetic TRPC6 S282E mutant was capable of ERK activation. Taken together, these results identify two pathways downstream of mutant TRPC6 leading to ERK activation that may play a role in the development of FSGS.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mutación , Canales Catiónicos TRPC/fisiología , Animales , Bencilaminas/farmacología , Calcineurina/metabolismo , Calmodulina/metabolismo , Línea Celular , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Inhibidores Enzimáticos/farmacología , Receptores ErbB/metabolismo , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Células HEK293 , Humanos , Immunoblotting , Isoquinolinas/farmacología , Fosforilación/efectos de los fármacos , Podocitos/citología , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sulfonamidas/farmacología , Canales Catiónicos TRPC/genética , Canal Catiónico TRPC6
14.
Kidney Int ; 85(1): 124-33, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24048372

RESUMEN

Our understanding of focal and segmental glomerulosclerosis (FSGS) has advanced significantly from the studies of rare, monogenic forms of the disease. These studies have demonstrated the critical roles of multiple aspects of podocyte function in maintaining glomerular function. A substantial body of research has suggested that the integral membrane protein podocalyxin (PODXL) is required for proper functioning of podocytes, possibly by preserving the patency of the slit diaphragm by negative charge-based repulsion. Exome sequencing of affected cousins from an autosomal dominant pedigree with FSGS identified a cosegregating private variant, PODXL p.L442R, affecting the transmembrane region of the protein. Of the remaining 11 shared gene variants, two segregated with disease, but their gene products were not detected in the glomerulus. In comparison with wild type, this disease-segregating PODXL variant facilitated dimerization. By contrast, this change does not alter protein stability, extracellular domain glycosylation, cell surface expression, global subcellular localization, or interaction with its intracellular binding partner ezrin. Thus, a variant form of PODXL remains the most likely candidate causing FSGS in one family with autosomal dominant inheritance, but its full effect on protein function remains unknown. Our work highlights the challenge faced in the clinical interpretation of whole-exome data for small pedigrees with autosomal dominant diseases.


Asunto(s)
Exoma/genética , Glomeruloesclerosis Focal y Segmentaria/genética , Sialoglicoproteínas/genética , Adolescente , Adulto , Animales , Niño , Perros , Femenino , Genes Dominantes , Variación Genética , Humanos , Células de Riñón Canino Madin Darby , Masculino , Ratones , Persona de Mediana Edad , Conejos , Ratas , Análisis de Secuencia de ADN , Adulto Joven
15.
Proc Natl Acad Sci U S A ; 108(7): 2933-8, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21278336

RESUMEN

Inverted formin 2 (INF2) encodes a member of the diaphanous subfamily of formin proteins. Mutations in INF2 cause human kidney disease characterized by focal and segmental glomerulosclerosis. Disease-causing mutations occur only in the diaphanous inhibitory domain (DID), suggesting specific roles for this domain in the pathogenesis of disease. In a yeast two-hybrid screen, we identified the diaphanous autoregulatory domains (DADs) of the mammalian diaphanous-related formins (mDias) mDia1, mDia2, and mDia 3 as INF2_DID-interacting partners. The mDias are Rho family effectors that regulate actin dynamics. We confirmed in vitro INF2_DID/mDia_DAD binding by biochemical assays, confirmed the in vivo interaction of these protein domains by coimmunoprecipitation, and observed colocalization of INF2 and mDias in glomerular podocytes. We investigated the influence of this INF2_DID/mDia_DAD interaction on mDia mediated actin polymerization and on serum response factor (SRF) activation. We find that the interaction of INF2_DID with mDia_DAD inhibited mDia-mediated, Rho-activated actin polymerization, as well as SRF-responsive gene transcriptional changes. Similar assays using the disease-causing E184K and R218Q mutations in INF2_DID showed a decreased effect on SRF activation and gene transcription. The binding of INF2_DID to mDia_DAD may serve as a negative regulatory mechanism for mDias' function in actin-dependent cell processes. The effects of disease-causing INF2 mutations suggest an important role for this protein and its interaction with other formins in modulating glomerular podocyte phenotype and function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Actinas/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Cartilla de ADN/genética , Forminas , Glomeruloesclerosis Focal y Segmentaria/genética , Células HEK293 , Humanos , Inmunoprecipitación , Luciferasas , Ratones , Mutación/genética , Células 3T3 NIH , Podocitos/metabolismo , Polimerizacion , Factores de Empalme de ARN , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Fluorescencia , Técnicas del Sistema de Dos Híbridos
16.
J Am Soc Nephrol ; 24(6): 917-29, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23620398

RESUMEN

Mutations in inverted formin 2 INF2 are a common cause of familial FSGS. INF2 interacts with diaphanous-related formins (mDia) and antagonizes mDia-mediated actin polymerization in response to active Rho signaling, suggesting that dysregulation of these pathways may mediate the development of INF2-related FSGS. However, the precise mechanisms by which INF2 regulates actin-dependent podocyte behavior remain largely unknown. Here, we investigated the possible role of INF2 in both lamellipodia-associated actin dynamics and actin-dependent slit diaphragm (SD) protein trafficking by manipulating the expression of INF2 and the activity of Rho/mDia signaling in cultured podocytes. Activation of mDia in the absence of INF2 led to defective formation of lamellipodia and abnormal SD trafficking. Effects of mutations disrupting the INF2-mDia interaction suggested the specificity of the mDia-antagonizing effect of INF2 in maintaining the lamellipodium. Furthermore, we found that SD trafficking requires INF2 interaction with lipid raft components. In summary, INF2 regulates lamellipodial actin dynamics and the trafficking of slit diaphragm proteins by opposing Rho/mDia-mediated actin polymerization. Thus, in podocytes, INF2 appears to be an important modulator of actin-dependent behaviors that are under the control of Rho/mDia signaling.


Asunto(s)
Actinas/metabolismo , Proteínas Portadoras/metabolismo , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Proteínas de Microfilamentos/metabolismo , Podocitos/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Línea Celular Transformada , Citosol/metabolismo , Dimerización , Forminas , Glomeruloesclerosis Focal y Segmentaria/genética , Humanos , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Podocitos/citología , Mutación Puntual , Estructura Cuaternaria de Proteína , Transporte de Proteínas/fisiología , Seudópodos/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal/fisiología
17.
BMC Cell Biol ; 13: 33, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23171048

RESUMEN

BACKGROUND: Transient receptor potential canonical (TRPC) channels are non-selective cation channels involved in receptor-mediated calcium signaling in diverse cells and tissues. The canonical transient receptor potential 6 (TRPC6) has been implicated in several pathological processes, including focal segmental glomerulosclerosis (FSGS), cardiac hypertrophy, and pulmonary hypertension. The two large cytoplasmic segments of the cation channel play a critical role in the proper regulation of channel activity, and are involved in several protein-protein interactions. RESULTS: Here we report that SNF8, a component of the endosomal sorting complex for transport-II (ESCRT-II) complex, interacts with TRPC6. The interaction was initially observed in a yeast two-hybrid screen using the amino-terminal cytoplasmic domain of TRPC6 as bait, and confirmed by co-immunoprecipitation from eukaryotic cell extracts. The amino-terminal 107 amino acids are necessary and sufficient for the interaction. Overexpression of SNF8 enhances both wild-type and gain-of-function mutant TRPC6-mediated whole-cell currents in HEK293T cells. Furthermore, activation of NFAT-mediated transcription by gain-of-function mutants is enhanced by overexpression of SNF8, and partially inhibited by RNAi mediated knockdown of SNF8. Although the ESCRT-II complex functions in the endocytosis and lysosomal degradation of transmembrane proteins, SNF8 overexpression does not alter the amount of TRPC6 present on the cell surface. CONCLUSION: SNF8 is novel binding partner of TRPC6, binding to the amino-terminal cytoplasmic domain of the channel. Modulating SNF8 expression levels alters the TRPC6 channel current and can modulate activation of NFAT-mediated transcription downstream of gain-of-function mutant TRPC6. Taken together, these results identify SNF8 as a novel regulator of TRPC6.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Canales Catiónicos TRPC/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/antagonistas & inhibidores , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Células HEK293 , Humanos , Inmunoprecipitación , Mutación , Factores de Transcripción NFATC/metabolismo , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Canales Catiónicos TRPC/genética , Canal Catiónico TRPC6 , Transcripción Genética , Técnicas del Sistema de Dos Híbridos
18.
Pediatr Nephrol ; 27(9): 1595-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22660954

RESUMEN

BACKGROUND: Empiric steroid therapy is the first-line therapy for pediatric nephrotic syndrome, but treatment response is variable. There are few predictors of steroid-responsiveness, although evidence for genetic factors does exist. Single nucleotide polymorphisms (SNPs) have been recently identified in the promoter region of glucocorticoid-induced transcript 1 gene (GLCCI1) which affect steroid-responsiveness in asthmatic patients. Independently, GLCCI1 was identified as a podocyte protein, the loss of which disrupts the function of the glomerular filtration barrier. We therefore examined whether SNPs associated with the steroid-responsive expression of GLCCI1 might predict steroid-responsiveness in nephrotic syndrome. CASE-DIAGNOSIS/TREATMENT: A cohort of 211 pediatric patients with nephrotic syndrome and 102 controls were genotyped; among the cases, 117 were initial steroid responders, while 94 did not respond to oral steroids. No statistically significant differences were noted among the groups, although there was a trend based on the comparison of the small subgroups of steroid-responsive and non-responsive patients with biopsy-proven minimal change disease. CONCLUSIONS: While larger cohorts are needed to ascertain the possibility of a small effect of GLCCI1 SNPs on the steroid-responsiveness of nephrotic syndrome, the GLCCI1 SNPs associated with steroid-responsiveness in asthmatic patients are unlikely to have a clinically actionable impact in pediatric nephrotic syndrome.


Asunto(s)
Resistencia a Medicamentos/genética , Glucocorticoides/uso terapéutico , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/genética , Polimorfismo de Nucleótido Simple , Receptores de Glucocorticoides/genética , Adolescente , Niño , Preescolar , Femenino , Frecuencia de los Genes , Genotipo , Humanos , Lactante , Masculino
19.
PLoS One ; 17(6): e0270431, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35749414

RESUMEN

Platelets enhance coagulation by exposing phosphatidylserine (PS) on their cell surface in response to strong agonist activation. Transient receptor potential channels, including TRPC6, have been implicated in the calcium influx central to this process. Here, we characterize the effect of a Trpc6 gain-of-function (GOF) disease-associated, and a dominant negative (DN), mutation on murine platelet activation. Platelets from mice harboring Trpc6E896K/E896K (GOF) and Trpc6DN/DN mutations were subject to in vitro analysis. Trpc6E896K/E896K and Trpc6DN/DN mutant platelets show enhanced and absent calcium influx, respectively, upon addition of the TRPC3/6 agonist GSK1702934A (GSK). GSK was sufficient to induce integrin αIIbß3 activation, P-selection and PS exposure, talin cleavage, and MLC2 phosphorylation in Trpc6E896K/E896K, but not in wild-type, platelets. Thrombin-induced calcium influx and PS exposure were enhanced, and clot retraction delayed, by GOF TRPC6, while no differences were noted between wild-type and Trpc6DN/DN platelets. In contrast, Erk activation upon GSK treatment was absent in Trpc6DN/DN, and enhanced in Trpc6E896K/E896K, platelets, compared to wild-type. The positive allosteric modulator, TRPC6-PAM-C20, and fluoxetine maintained their ability to enhance and inhibit, respectively, GSK-mediated calcium influx in Trpc6E896K/E896K platelets. The data demonstrate that gain-of-function mutant TRPC6 channel can enhance platelet activation, including PS exposure, while confirming that TRPC6 is not necessary for this process. Furthermore, the results suggest that Trpc6 GOF disease mutants do not simply increase wild-type TRPC6 responses, but can affect pathways not usually modulated by TRPC6 channel activity, displaying a true gain-of-function phenotype.


Asunto(s)
Plaquetas , Fosfatidilserinas , Animales , Plaquetas/metabolismo , Calcio/metabolismo , Mutación con Ganancia de Función , Ratones , Mutación , Fosfatidilserinas/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Canal Catiónico TRPC6/genética , Canal Catiónico TRPC6/metabolismo
20.
PLoS One ; 17(8): e0272313, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35913909

RESUMEN

Mutations in TRPC6 are a cause of autosomal dominant focal segmental glomerulosclerosis in humans. Many of these mutations are known to have a gain-of-function effect on the non-specific cation channel function of TRPC6. In vitro studies have suggested these mutations affect several signaling pathways, but in vivo studies have largely compared wild-type and Trpc6-deficient rodents. We developed mice carrying a gain-of-function Trpc6 mutation encoding an E896K amino acid change, corresponding to a known FSGS mutation in TRPC6. Homozygous mutant Trpc6 animals have no appreciable renal pathology, and do not develop albuminuria until very advanced age. The Trpc6E896K mutation does not impart susceptibility to PAN nephrosis. The animals show a slight delay in recovery from the albumin overload model. In response to chronic angiotensin II infusion, Trpc6E896K/E896K mice have slightly greater albuminuria initially compared to wild-type animals, an effect that is lost at later time points, and a statistically non-significant trend toward more glomerular injury. This phenotype is nearly opposite to that of Trpc6-deficient animals previously described. The Trpc6 mutation does not appreciably impact renal interstitial fibrosis in response to either angiotensin II infusion, or folate-induced kidney injury. TRPC6 protein and TRPC6-agonist induced calcium influx could not be detected in glomeruli. In sum, these findings suggest that a gain-of-function Trpc6 mutation confers only a mild susceptibility to glomerular injury in the mouse.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Enfermedades Renales , Podocitos , Canal Catiónico TRPC6 , Albuminuria/patología , Angiotensina II/farmacología , Animales , Modelos Animales de Enfermedad , Mutación con Ganancia de Función , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Riñón/patología , Enfermedades Renales/patología , Ratones , Mutación , Podocitos/metabolismo , Canal Catiónico TRPC6/genética , Canal Catiónico TRPC6/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA