Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Biol Chem ; 404(2-3): 209-219, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36534601

RESUMEN

For the biogenesis and maintenance of peroxisomes several proteins, called peroxins, are essential. Malfunctions of these proteins lead to severe diseases summarized as peroxisome biogenesis disorders. The different genetic background of patient-derived cell lines and the residual expression of mutated PEX genes impede analysis of the whole spectrum of cellular functions of affected peroxins. To overcome these difficulties, we have generated a selected PEX knockout resource of HEK T-REx293 cells using the CRISPR/Cas9 technique. Comparative analyses of whole cell lysates revealed PEX-KO specific alterations in the steady-state level of peroxins and variations in the import efficacy of matrix proteins with a Type 2 peroxisomal targeting signal. One of the observed differences concerned PEX1 as in the complete absence of the protein, the number of peroxisomal ghosts is significantly increased. Upon expression of PEX1, import competence and abundance of peroxisomes was adjusted to the level of normal HEK cells. In contrast, expression of an alternatively spliced PEX1 isoform lacking 321 amino acids of the N-terminal region failed to rescue the peroxisomal import defects but reduced the number of peroxisomal vesicles. All in all, the data suggest a novel 'moonlighting' function of human PEX1 in the regulation of pre-peroxisomal vesicles.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Biogénesis de Organelos , Peroxisomas , Humanos , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Línea Celular , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Peroxinas/genética , Peroxinas/análisis , Peroxinas/metabolismo , Trastorno Peroxisomal/genética , Trastorno Peroxisomal/metabolismo , Peroxisomas/genética , Peroxisomas/metabolismo , Isoformas de Proteínas/metabolismo
2.
Biol Chem ; 404(2-3): 157-167, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36260915

RESUMEN

The assembly of the peroxisomal translocon involves the transition of a soluble form of the peroxisomal targeting receptor PEX5 into a membrane-bound form, which becomes an integral membrane component of the import pore for peroxisomal matrix proteins. How this transition occurs is still a mystery. We addressed this question using a artificial horizontal bilayer in combination with fluorescence time-correlated single photon counting (TCSPC) and electrophysiological channel recording. Purified human isoform PEX5L and truncated PEX5L(1-335) lacking the cargo binding domain were selectively labeled with thiol-reactive Atto-dyes. Diffusion coefficients of labeled protein in solution show that PEX5L is monomeric with a rather compact spherical conformation, while the truncated protein appeared in a more extended conformation. Labeled PEX5L and the truncated PEX5L(1-335) bind stably to horizontal bilayer thereby accumulating around 100-fold. The diffusion coefficients of the membrane-bound PEX5L forms are 3-4 times lower than in solution, indicating the formation of larger complexes. Electrophysiological single channel recording shows that membrane-bound labeled and non-labeled PEX5L, but not the truncated PEX5L(1-335), can form ion conducting membrane channels. The data suggest that PEX5L is the pore-forming component of the oligomeric peroxisomal translocon and that spontaneous PEX5L membrane surface binding might be an important step in its assembly.


Asunto(s)
Membrana Dobles de Lípidos , Peroxisomas , Humanos , Membrana Dobles de Lípidos/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Peroxisomas/metabolismo , Isoformas de Proteínas/metabolismo , Canales Iónicos/metabolismo , Transporte de Proteínas
3.
Biol Chem ; 404(2-3): 179-194, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36437542

RESUMEN

The cycling import receptor PEX5 and its membrane-located binding partner PEX14 are key constituents of the peroxisomal import machinery. Upon recognition of newly synthesized cargo proteins carrying a peroxisomal targeting signal type 1 (PTS1) in the cytosol, the PEX5/cargo complex docks at the peroxisomal membrane by binding to PEX14. The PEX14 N-terminal domain (NTD) recognizes (di)aromatic peptides, mostly corresponding to Wxxx(F/Y)-motifs, with nano-to micromolar affinity. Human PEX5 possesses eight of these conserved motifs distributed within its 320-residue disordered N-terminal region. Here, we combine biophysical (ITC, NMR, CD), biochemical and computational methods to characterize the recognition of these (di)aromatic peptides motifs and identify key features that are recognized by PEX14. Notably, the eight motifs present in human PEX5 exhibit distinct affinities and energetic contributions for the interaction with the PEX14 NTD. Computational docking and analysis of the interactions of the (di)aromatic motifs identify the specific amino acids features that stabilize a helical conformation of the peptide ligands and mediate interactions with PEX14 NTD. We propose a refined consensus motif ExWΦxE(F/Y)Φ for high affinity binding to the PEX14 NTD and discuss conservation of the (di)aromatic peptide recognition by PEX14 in other species.


Asunto(s)
Proteínas Portadoras , Proteínas de la Membrana , Humanos , Unión Proteica , Transporte de Proteínas , Proteínas de la Membrana/metabolismo , Proteínas Portadoras/metabolismo , Péptidos/química , Peroxisomas/metabolismo
4.
Biol Chem ; 404(2-3): 169-178, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35977096

RESUMEN

Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and imported in a posttranslational manner. Intricate protein import machineries have evolved that catalyze the different stages of translocation. In humans, PEX5L was found to be an essential component of the peroxisomal translocon. PEX5L is the main receptor for substrate proteins carrying a peroxisomal targeting signal (PTS). Substrates are bound by soluble PEX5L in the cytosol after which the cargo-receptor complex is recruited to peroxisomal membranes. Here, PEX5L interacts with the docking protein PEX14 and becomes part of an integral membrane protein complex that facilitates substrate translocation into the peroxisomal lumen in a still unknown process. In this study, we show that PEX5L containing complexes purified from human peroxisomal membranes constitute water-filled pores when reconstituted into planar-lipid membranes. Channel characteristics were highly dynamic in terms of conductance states, selectivity and voltage- and substrate-sensitivity. Our results show that a PEX5L associated pore exists in human peroxisomes, which can be activated by receptor-cargo complexes.


Asunto(s)
Proteínas Portadoras , Proteínas de la Membrana , Humanos , Proteínas de la Membrana/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Proteínas Portadoras/metabolismo , Transporte de Proteínas , Peroxisomas/metabolismo
5.
Biol Chem ; 404(2-3): 121-133, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36279206

RESUMEN

Accurate and regulated protein targeting is crucial for cellular function and proteostasis. In the yeast Saccharomyces cerevisiae, peroxisomal matrix proteins, which harboring a Peroxisomal Targeting Signal 1 (PTS1), can utilize two paralog targeting factors, Pex5 and Pex9, to target correctly. While both proteins are similar and recognize PTS1 signals, Pex9 targets only a subset of Pex5 cargo proteins. However, what defines this substrate selectivity remains uncovered. Here, we used unbiased screens alongside directed experiments to identify the properties underlying Pex9 targeting specificity. We find that the specificity of Pex9 is largely determined by the hydrophobic nature of the amino acid preceding the PTS1 tripeptide of its cargos. This is explained by structural modeling of the PTS1-binding cavities of the two factors showing differences in their surface hydrophobicity. Our work outlines the mechanism by which targeting specificity is achieved, enabling dynamic rewiring of the peroxisomal proteome in changing metabolic needs.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Peroxisomas/metabolismo
6.
J Cell Sci ; 133(24)2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33177075

RESUMEN

Eukaryotic cells have evolved organelles that allow the compartmentalization and regulation of metabolic processes. Knowledge of molecular mechanisms that allow temporal and spatial organization of enzymes within organelles is therefore crucial for understanding eukaryotic metabolism. Here, we show that the yeast malate dehydrogenase 2 (Mdh2) is dually localized to the cytosol and to peroxisomes and is targeted to peroxisomes via association with Mdh3 and a Pex5-dependent piggybacking mechanism. This dual localization of Mdh2 contributes to our understanding of the glyoxylate cycle and provides a new perspective on compartmentalization of cellular metabolism, which is critical for the perception of metabolic disorders and aging.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Secuencia de Aminoácidos , Citosol/metabolismo , Glioxilatos , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Peroxisomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Nat Rev Mol Cell Biol ; 11(12): 885-90, 2010 12.
Artículo en Inglés | MEDLINE | ID: mdl-21081964

RESUMEN

Despite their distinct biological functions, there is a surprising similarity between the composition of the machinery that imports proteins into peroxisomes and the machinery that degrades endoplasmic reticulum (ER)-associated proteins. The basis of this similarity lies in the fact that both machineries make use of the same basic mechanistic principle: the tagging of a substrate by monoubiquitylation or polyubiquitylation and its subsequent recognition and ATP-dependent removal from a membrane by ATPases of the ATPases associated with diverse cellular activities (AAA) family of proteins. We propose that the ER-associated protein degradation (ERAD)-like removal of the peroxisomal import receptor is mechanically coupled to protein translocation into the organelle, giving rise to a new concept of export-driven import.


Asunto(s)
Retículo Endoplásmico/fisiología , Peroxisomas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Transporte de Proteínas/fisiología , Animales , Retículo Endoplásmico/metabolismo , Humanos , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/fisiología
8.
Chembiochem ; 22(4): 686-693, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33049107

RESUMEN

Expansion microscopy (ExM) has been successfully used to improve the spatial resolution when imaging tissues by optical microscopy. In ExM, proteins of a fixed sample are crosslinked to a swellable acrylamide gel, which expands when incubated in water. Therefore, ExM allows enlarged subcellular structures to be resolved that would otherwise be hidden to standard confocal microscopy. Herein, we aim to validate ExM for the study of peroxisomes, mitochondria, nuclei and the plasma membrane. Upon comparison of the expansion factors of these cellular compartments in HEK293 cells within the same gel, we found significant differences, of a factor of above 2, in expansion factors. For peroxisomes, the expansion factor differed even between peroxisomal membrane and matrix marker; this underlines the need for a thorough validation of expansion factors of this powerful technique. We further give an overview of possible quantification methods for the determination of expansion factors of intracellular organelles, and we highlight some potentials and challenges.


Asunto(s)
Membrana Celular/ultraestructura , Núcleo Celular/ultraestructura , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Mitocondrias/ultraestructura , Imagen Molecular/métodos , Peroxisomas/ultraestructura , Células HEK293 , Humanos
9.
J Chem Inf Model ; 61(10): 5256-5268, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34597510

RESUMEN

African and American trypanosomiases are estimated to affect several million people across the world, with effective treatments distinctly lacking. New, ideally oral, treatments with higher efficacy against these diseases are desperately needed. Peroxisomal import matrix (PEX) proteins represent a very interesting target for structure- and ligand-based drug design. The PEX5-PEX14 protein-protein interface in particular has been highlighted as a target, with inhibitors shown to disrupt essential cell processes in trypanosomes, leading to cell death. In this work, we present a drug development campaign that utilizes the synergy between structural biology, computer-aided drug design, and medicinal chemistry in the quest to discover and develop new potential compounds to treat trypanosomiasis by targeting the PEX14-PEX5 interaction. Using the structure of the known lead compounds discovered by Dawidowski et al. as the template for a chemically advanced template search (CATS) algorithm, we performed scaffold-hopping to obtain a new class of compounds with trypanocidal activity, based on 2,3,4,5-tetrahydrobenzo[f][1,4]oxazepines chemistry. The initial compounds obtained were taken forward to a first round of hit-to-lead optimization by synthesis of derivatives, which show activities in the range of low- to high-digit micromolar IC50 in the in vitro tests. The NMR measurements confirm binding to PEX14 in solution, while immunofluorescent microscopy indicates disruption of protein import into the glycosomes, indicating that the PEX14-PEX5 protein-protein interface was successfully disrupted. These studies result in development of a novel scaffold for future lead optimization, while ADME testing gives an indication of further areas of improvement in the path from lead molecules toward a new drug active against trypanosomes.


Asunto(s)
Oxazepinas , Tripanocidas , Diseño Asistido por Computadora , Proteínas de la Membrana/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Receptores Citoplasmáticos y Nucleares , Proteínas Represoras/metabolismo , Tripanocidas/farmacología
10.
Subcell Biochem ; 89: 261-285, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30378027

RESUMEN

Different pull-down strategies were successfully applied to gain novel insight into the interactome of human membrane-associated proteins. Here, we compare the outcome, efficiency and potential of pull-down strategies applied to human peroxisomal membrane proteins. Stable membrane-bound protein complexes can be affinity-purified from genetically engineered human cells or subfractions thereof after detergent solubilization, followed by size exclusion chromatography and analysis by mass spectrometry (MS). As exemplified for Protein A-tagged human PEX14, one of the central constituents of the peroxisomal matrix protein import machinery, MS analyses of the affinity-purified complexes revealed an unexpected association of PEX14 with other protein assemblies like the microtubular network or the insertion apparatus for peroxisomal membrane proteins comprising PEX3, PEX16 and PEX19. The latter association was recently supported by using a different pull-down strategy following in vivo proximity labeling with biotin, named BioID, which enabled the identification of various membrane proteins in close proximity of PEX16 in living cells.


Asunto(s)
Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas , Línea Celular , Humanos , Membranas Intracelulares/metabolismo , Proteínas Represoras/metabolismo
11.
J Cell Sci ; 129(21): 4057-4066, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27678487

RESUMEN

Peroxisomal proteins carrying a type 1 peroxisomal targeting signal (PTS1) are recognized by the well-conserved cycling import receptor Pex5p. The yeast YMR018W gene encodes a Pex5p paralog and newly identified peroxin that is involved in peroxisomal import of a subset of matrix proteins. The new peroxin was designated Pex9p, and it interacts with the docking protein Pex14p and a subclass of PTS1-containing peroxisomal matrix enzymes. Unlike Pex5p, Pex9p is not expressed in glucose- or ethanol-grown cells, but it is strongly induced by oleate. Under these conditions, Pex9p acts as a cytosolic and membrane-bound peroxisome import receptor for both malate synthase isoenzymes, Mls1p and Mls2p. The inducible Pex9p-dependent import pathway provides a mechanism for the oleate-inducible peroxisomal targeting of malate synthases. The existence of two distinct PTS1 receptors, in addition to two PTS2-dependent import routes, contributes to the adaptive metabolic capacity of peroxisomes in response to environmental changes and underlines the role of peroxisomes as multi-purpose organelles. The identification of different import routes into peroxisomes contributes to the molecular understanding of how regulated protein targeting can alter the function of organelles according to cellular needs.


Asunto(s)
Peroxisomas/metabolismo , Señales de Clasificación de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Malato Sintasa/metabolismo , Modelos Biológicos , Ácido Oléico/farmacología , Peroxisomas/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Señales de Clasificación de Proteína/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/química , Homología Estructural de Proteína , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
12.
Biol Chem ; 399(7): 741-749, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29500918

RESUMEN

In order to adapt to environmental changes, such as nutrient availability, cells have to orchestrate multiple metabolic pathways, which are catalyzed in distinct specialized organelles. Lipid droplets (LDs) and peroxisomes are both endoplasmic reticulum (ER)-derived organelles that fulfill complementary functions in lipid metabolism: Upon nutrient supply, LDs store metabolic energy in the form of neutral lipids and, when energy is needed, supply fatty acids for oxidation in peroxisomes and mitochondria. How these organelles communicate with each other for a concerted metabolic output remains a central question. Here, we summarize recent insights into the biogenesis and function of LDs and peroxisomes with emphasis on the role of PEX19 in these processes.


Asunto(s)
Gotas Lipídicas/metabolismo , Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Comunicación Celular , Humanos , Gotas Lipídicas/química , Proteínas de la Membrana/química , Peroxisomas/química
13.
Traffic ; 16(1): 85-98, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25369882

RESUMEN

Peroxisomes entirely rely on the import of their proteome across the peroxisomal membrane. Recognition efficiencies of peroxisomal proteins vary by more than 1000-fold, but the molecular rationale behind their subsequent differential import and sorting has remained enigmatic. Using the protein cargo alanine-glyoxylate aminotransferase as a model, an unexpected increase from 34 to 80% in peroxisomal import efficiency of a single-residue mutant has been discovered. By high-resolution structural analysis, we found that it is the recognition receptor PEX5 that adapts its conformation for high-affinity binding rather than the cargo protein signal motif as previously thought. During receptor recognition, the binding cavity of the receptor shrinks to one third of its original volume. This process is impeded in the wild-type protein cargo because of a bulky side chain within the recognition motif, which blocks contraction of the PEX5 binding cavity. Our data provide a new insight into direct protein import efficiency by removal rather than by addition of an apparent specific sequence signature that is generally applicable to peroxisomal matrix proteins and to other receptor recognition processes.


Asunto(s)
Membranas Intracelulares/metabolismo , Peroxisomas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Portadoras/metabolismo , Humanos , Ligandos , Proteínas de la Membrana/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Transporte de Proteínas
14.
J Biol Chem ; 291(33): 16948-62, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27311714

RESUMEN

Membrane-associated events during peroxisomal protein import processes play an essential role in peroxisome functionality. Many details of these processes are not known due to missing spatial resolution of technologies capable of investigating peroxisomes directly in the cell. Here, we present the use of super-resolution optical stimulated emission depletion microscopy to investigate with sub-60-nm resolution the heterogeneous spatial organization of the peroxisomal proteins PEX5, PEX14, and PEX11 around actively importing peroxisomes, showing distinct differences between these peroxins. Moreover, imported protein sterol carrier protein 2 (SCP2) occupies only a subregion of larger peroxisomes, highlighting the heterogeneous distribution of proteins even within the peroxisome. Finally, our data reveal subpopulations of peroxisomes showing only weak colocalization between PEX14 and PEX5 or PEX11 but at the same time a clear compartmentalized organization. This compartmentalization, which was less evident in cases of strong colocalization, indicates dynamic protein reorganization linked to changes occurring in the peroxisomes. Through the use of multicolor stimulated emission depletion microscopy, we have been able to characterize peroxisomes and their constituents to a yet unseen level of detail while maintaining a highly statistical approach, paving the way for equally complex biological studies in the future.


Asunto(s)
Proteínas Portadoras/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/metabolismo , Línea Celular , Humanos , Microscopía , Receptor de la Señal 1 de Direccionamiento al Peroxisoma
15.
Biochim Biophys Acta ; 1863(5): 1019-26, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26616035

RESUMEN

Attachment of peroxisomes to cytoskeleton and movement along microtubular filaments and actin cables are essential and highly regulated processes enabling metabolic efficiency, biogenesis, maintenance and inheritance of this dynamic cellular compartment. Several peroxisome-associated proteins have been identified, which mediate interaction with motor proteins, adaptor proteins or other constituents of the cytoskeleton. It appears that there is a species-specific complexity of protein-protein interactions required to control directional movement and arresting. An open question is why some proteins with a specific role in peroxisomal protein import have an additional function in the regulation of cytoskeleton binding and motility of peroxisomes.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Microtúbulos/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Peroxisomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/ultraestructura , Transporte Biológico , Regulación de la Expresión Génica , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microtúbulos/genética , Microtúbulos/ultraestructura , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genética , Biogénesis de Organelos , Peroxinas , Peroxisomas/genética , Peroxisomas/ultraestructura , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
16.
J Biol Chem ; 290(42): 25333-42, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26276932

RESUMEN

Proteins designated for peroxisomal protein import harbor one of two common peroxisomal targeting signals (PTS). In the yeast Saccharomyces cerevisiae, the oleate-induced PTS2-dependent import of the thiolase Fox3p into peroxisomes is conducted by the soluble import receptor Pex7p in cooperation with the auxiliary Pex18p, one of two supposedly redundant PTS2 co-receptors. Here, we report on a novel function for the co-receptor Pex21p, which cannot be fulfilled by Pex18p. The data establish Pex21p as a general co-receptor in PTS2-dependent protein import, whereas Pex18p is especially important for oleate-induced import of PTS2 proteins. The glycerol-producing PTS2 protein glycerol-3-phosphate dehydrogenase Gpd1p shows a tripartite localization in peroxisomes, in the cytosol, and in the nucleus under osmotic stress conditions. We show the following: (i) Pex21p is required for peroxisomal import of Gpd1p as well as a key enzyme of the NAD(+) salvage pathway, Pnc1p; (ii) Pnc1p, a nicotinamidase without functional PTS2, is co-imported into peroxisomes by piggyback transport via Gpd1p. Moreover, the specific transport of these two enzymes into peroxisomes suggests a novel regulatory role for peroxisomes under various stress conditions.


Asunto(s)
Proteínas Portadoras/fisiología , Glicerol-3-Fosfato Deshidrogenasa (NAD+)/metabolismo , Nicotinamidasa/metabolismo , Peroxisomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Dimerización , Transporte de Proteínas , Saccharomyces cerevisiae/fisiología , Estrés Fisiológico
17.
J Biol Chem ; 290(44): 26610-26, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26359497

RESUMEN

The peroxisomal matrix protein import is facilitated by cycling import receptors that shuttle between the cytosol and the peroxisomal membrane. The import receptor Pex5p mediates the import of proteins harboring a peroxisomal targeting signal of type I (PTS1). Purified recombinant Pex5p forms a dimeric complex with the PTS1-protein Pcs60p in vitro with a KD of 0.19 µm. To analyze the structural basis for receptor-cargo recognition, the PTS1 and adjacent amino acids of Pcs60p were systematically scanned for Pex5p binding by an in vitro site-directed photo-cross-linking approach. The cross-linked binding regions of the receptor were subsequently identified by high resolution mass spectrometry. Most cross-links were found with TPR6, TPR7, as well as the 7C-loop of Pex5p. Surface plasmon resonance analysis revealed a bivalent interaction mode for Pex5p and Pcs60p. Interestingly, Pcs60p lacking its C-terminal tripeptide sequence was efficiently cross-linked to the same regions of Pex5p. The KD value of the interaction of truncated Pcs60p and Pex5p was in the range of 7.7 µm. Isothermal titration calorimetry and surface plasmon resonance measurements revealed a monovalent binding mode for the interaction of Pex5p and Pcs60p lacking the PTS1. Our data indicate that Pcs60p contains a second contact site for its receptor Pex5p, beyond the C-terminal tripeptide. The physiological relevance of the ancillary binding region was supported by in vivo import studies. The bivalent binding mode might be explained by a two-step concept as follows: first, cargo recognition and initial tethering by the PTS1-receptor Pex5p; second, lock-in of receptor and cargo.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Ligasas/química , Proteínas de la Membrana/química , Proteínas de Transporte de Membrana/química , Proteínas Recombinantes de Fusión/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Cinética , Ligasas/genética , Ligasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Peroxisomas/metabolismo , Fosforilación , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Termodinámica , Transfección
18.
Biochim Biophys Acta ; 1853(10 Pt A): 2326-37, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26025675

RESUMEN

Protozoan parasites of the family Trypanosomatidae infect humans as well as livestock causing devastating diseases like sleeping sickness, Chagas disease, and Leishmaniasis. These parasites compartmentalize glycolytic enzymes within unique organelles, the glycosomes. Glycosomes represent a subclass of peroxisomes and they are essential for the parasite survival. Hence, disruption of glycosome biogenesis is an attractive drug target for these Neglected Tropical Diseases (NTDs). Peroxin 16 (PEX16) plays an essential role in peroxisomal membrane protein targeting and de novo biogenesis of peroxisomes from endoplasmic reticulum (ER). We identified trypanosomal PEX16 based on specific sequence characteristics and demonstrate that it is an integral glycosomal membrane protein of procyclic and bloodstream form trypanosomes. RNAi mediated partial knockdown of Trypanosoma brucei PEX16 in bloodstream form trypanosomes led to severe ATP depletion, motility defects and cell death. Microscopic and biochemical analysis revealed drastic reduction in glycosome number and mislocalization of the glycosomal matrix enzymes to the cytosol. Asymmetry of the localization of the remaining glycosomes was observed with a severe depletion in the posterior part. The results demonstrate that trypanosomal PEX16 is essential for glycosome biogenesis and thereby, provides a potential drug target for sleeping sickness and related diseases.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Animales , Retículo Endoplásmico/genética , Humanos , Proteínas de la Membrana/genética , Peroxisomas/genética , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/genética , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/genética , Tripanosomiasis Africana/metabolismo , Tripanosomiasis Africana/patología
20.
J Biol Chem ; 289(1): 437-48, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24235149

RESUMEN

Protein import into peroxisomes relies on the import receptor Pex5, which recognizes proteins with a peroxisomal targeting signal 1 (PTS1) in the cytosol and directs them to a docking complex at the peroxisomal membrane. Receptor-cargo docking occurs at the membrane-associated protein Pex14. In human cells, this interaction is mediated by seven conserved diaromatic penta-peptide motifs (WXXX(F/Y) motifs) in the N-terminal half of Pex5 and the N-terminal domain of Pex14. A systematic screening of a Pex5 peptide library by ligand blot analysis revealed a novel Pex5-Pex14 interaction site of Pex5. The novel motif composes the sequence LVAEF with the evolutionarily conserved consensus sequence LVXEF. Replacement of the amino acid LVAEF sequence by alanines strongly affects matrix protein import into peroxisomes in vivo. The NMR structure of a complex of Pex5-(57-71) with the Pex14-N-terminal domain showed that the novel motif binds in a similar α-helical orientation as the WXXX(F/Y) motif but that the tryptophan pocket is now occupied by a leucine residue. Surface plasmon resonance analyses revealed 33 times faster dissociation rates for the LVXEF ligand when compared with a WXXX(F/Y) motif. Surprisingly, substitution of the novel motif with the higher affinity WXXX(F/Y) motif impairs protein import into peroxisomes. These data indicate that the distinct kinetic properties of the novel Pex14-binding site in Pex5 are important for processing of the peroxisomal targeting signal 1 receptor at the peroxisomal membrane. The novel Pex14-binding site may represent the initial tethering site of Pex5 from which the cargo-loaded receptor is further processed in a sequential manner.


Asunto(s)
Membranas Intracelulares/química , Proteínas de la Membrana/química , Peroxisomas/química , Señales de Clasificación de Proteína/fisiología , Receptores Citoplasmáticos y Nucleares/química , Proteínas Represoras/química , Secuencias de Aminoácidos , Humanos , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Resonancia Magnética Nuclear Biomolecular , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Peroxisomas/genética , Peroxisomas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA