Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37108461

RESUMEN

Recently, we have shown that C6-ceramides efficiently suppress viral replication by trapping the virus in lysosomes. Here, we use antiviral assays to evaluate a synthetic ceramide derivative α-NH2-ω-N3-C6-ceramide (AKS461) and to confirm the biological activity of C6-ceramides inhibiting SARS-CoV-2. Click-labeling with a fluorophore demonstrated that AKS461 accumulates in lysosomes. Previously, it has been shown that suppression of SARS-CoV-2 replication can be cell-type specific. Thus, AKS461 inhibited SARS-CoV-2 replication in Huh-7, Vero, and Calu-3 cells up to 2.5 orders of magnitude. The results were confirmed by CoronaFISH, indicating that AKS461 acts comparable to the unmodified C6-ceramide. Thus, AKS461 serves as a tool to study ceramide-associated cellular and viral pathways, such as SARS-CoV-2 infections, and it helped to identify lysosomes as the central organelle of C6-ceramides to inhibit viral replication.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Ceramidas/farmacología , Ceramidas/metabolismo , Replicación Viral , Antivirales/farmacología
2.
FASEB J ; 33(1): 275-285, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29979630

RESUMEN

Bacterial pore-forming toxins compromise plasmalemmal integrity, leading to Ca2+ influx, leakage of the cytoplasm, and cell death. Such lesions can be repaired by microvesicular shedding or by the endocytic uptake of the injured membrane sites. Cells have at their disposal an entire toolbox of repair proteins for the identification and elimination of membrane lesions. Sphingomyelinases catalyze the breakdown of sphingomyelin into ceramide and phosphocholine. Sphingomyelin is predominantly localized in the outer leaflet, where it is hydrolyzed by acid sphingomyelinase (ASM) after lysosomal fusion with the plasma membrane. The magnesium-dependent neutral sphingomyelinase (NSM)-2 is found at the inner leaflet of the plasmalemma. Because either sphingomyelinase has been ascribed a role in the cellular stress response, we investigated their role in plasma membrane repair and cellular survival after treatment with the pore-forming toxins listeriolysin O (LLO) or pneumolysin (PLY). Jurkat T cells, in which ASM or NSM-2 was down-regulated [ASM knockdown (KD) or NSM-2 KD cells], showed inverse reactions to toxin-induced membrane damage: ASM KD cells displayed reduced toxin resistance, decreased viability, and defects in membrane repair. In contrast, the down-regulation of NSM-2 led to an increase in viability and enhanced plasmalemmal repair. Yet, in addition to the increased plasmalemmal repair, the enhanced toxin resistance of NSM-2 KD cells also appeared to be dependent on the activation of p38/MAPK, which was constitutively activated, whereas in ASM KD cells, the p38/MAPK activation was constitutively blunted.-Schoenauer, R., Larpin, Y., Babiychuk, E. B., Drücker, P., Babiychuk, V. S., Avota, E., Schneider-Schaulies, S., Schumacher, F., Kleuser, B., Köffel, R., Draeger, A. Down-regulation of acid sphingomyelinase and neutral sphingomyelinase-2 inversely determines the cellular resistance to plasmalemmal injury by pore-forming toxins.


Asunto(s)
Toxinas Bacterianas/farmacología , Membrana Celular/metabolismo , Proteínas de Choque Térmico/farmacología , Proteínas Hemolisinas/farmacología , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Estreptolisinas/farmacología , Proteínas Bacterianas/farmacología , Transporte Biológico , Sistemas CRISPR-Cas , Calcio/metabolismo , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Supervivencia Celular , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/efectos de los fármacos , Micropartículas Derivadas de Células/metabolismo , Humanos , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
Biol Chem ; 399(10): 1147-1155, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-29337691

RESUMEN

By hydrolyzing its substrate sphingomyelin at the cytosolic leaflet of cellular membranes, the neutral sphingomyelinase 2 (NSM2) generates microdomains which serve as docking sites for signaling proteins and thereby, functions to regulate signal relay. This has been particularly studied in cellular stress responses while the regulatory role of this enzyme in the immune cell compartment has only recently emerged. In T cells, phenotypic polarization by co-ordinated cytoskeletal remodeling is central to motility and interaction with endothelial or antigen-presenting cells during tissue recruitment or immune synapse formation, respectively. This review highlights studies adressing the role of NSM2 in T cell polarity in which the enzyme plays a major role in regulating cytoskeletal dynamics.


Asunto(s)
Polaridad Celular , Receptores de Antígenos de Linfocitos T/inmunología , Esfingomielina Fosfodiesterasa/metabolismo , Linfocitos T/citología , Linfocitos T/inmunología , Animales , Humanos , Transducción de Señal , Linfocitos T/metabolismo
4.
J Immunol ; 196(9): 3951-62, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27036914

RESUMEN

Sphingolipids are major components of the plasma membrane. In particular, ceramide serves as an essential building hub for complex sphingolipids, but also as an organizer of membrane domains segregating receptors and signalosomes. Sphingomyelin breakdown as a result of sphingomyelinase activation after ligation of a variety of receptors is the predominant source of ceramides released at the plasma membrane. This especially applies to T lymphocytes where formation of ceramide-enriched membrane microdomains modulates TCR signaling. Because ceramide release and redistribution occur very rapidly in response to receptor ligation, novel tools to further study these processes in living T cells are urgently needed. To meet this demand, we synthesized nontoxic, azido-functionalized ceramides allowing for bio-orthogonal click-reactions to fluorescently label incorporated ceramides, and thus investigate formation of ceramide-enriched domains. Azido-functionalized C6-ceramides were incorporated into and localized within plasma membrane microdomains and proximal vesicles in T cells. They segregated into clusters after TCR, and especially CD28 ligation, indicating efficient sorting into plasma membrane domains associated with T cell activation; this was abolished upon sphingomyelinase inhibition. Importantly, T cell activation was not abrogated upon incorporation of the compound, which was efficiently excluded from the immune synapse center as has previously been seen in Ab-based studies using fixed cells. Therefore, the functionalized ceramides are novel, highly potent tools to study the subcellular redistribution of ceramides in the course of T cell activation. Moreover, they will certainly also be generally applicable to studies addressing rapid stimulation-mediated ceramide release in living cells.


Asunto(s)
Azidas/metabolismo , Microdominios de Membrana/metabolismo , Microscopía Fluorescente/métodos , Receptores de Antígenos de Linfocitos T/metabolismo , Esfingolípidos/metabolismo , Linfocitos T/metabolismo , Azidas/química , Células Cultivadas , Humanos , Activación de Linfocitos , Transporte de Proteínas , Agregación de Receptores , Transducción de Señal , Esfingolípidos/química , Linfocitos T/inmunología
5.
Eur J Immunol ; 45(6): 1748-59, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25752285

RESUMEN

Though mostly defective, human endogenous retroviruses (HERV) can retain open reading frames, which are especially expressed in the placenta. There, the envelope (env) proteins of HERV-W (Syncytin-1), HERV-FRD (Syncytin-2), and HERV-K (HML-2) were implicated in tolerance against the semi-allogenic fetus. Here, we show that the known HERV env-binding receptors ASCT-1 and -2 and MFSD2 are expressed by DCs and T-cells. When used as effectors in coculture systems, CHO cells transfected to express Syncytin-1, -2, or HML-2 did not affect T-cell expansion or overall LPS-driven phenotypic DC maturation, however, promoted release of IL-12 and TNF-α rather than IL-10. In contrast, HERV env expressing choriocarcinoma cell lines suppressed T-cell proliferation and LPS-induced TNF-α and IL-12 release, however, promoted IL-10 accumulation, indicating that these effects might not rely on HERV env interactions. However, DCs conditioned by choriocarcinoma, but also transgenic CHO cells failed to promote allogenic T-cell expansion. This was associated with a loss of DC/T-cell conjugate frequencies, impaired Ca(2+) mobilization, and aberrant patterning of f-actin and tyrosine phosphorylated proteins in T-cells. Altogether, these findings suggest that HERV env proteins target T-cell activation indirectly by modulating the stimulatory activity of DCs.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Retrovirus Endógenos/metabolismo , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Proteínas del Envoltorio Viral/metabolismo , Sistema de Transporte de Aminoácidos ASC/genética , Sistema de Transporte de Aminoácidos ASC/metabolismo , Animales , Células CHO , Comunicación Celular/inmunología , Diferenciación Celular , Línea Celular , Coriocarcinoma/genética , Coriocarcinoma/inmunología , Coriocarcinoma/metabolismo , Cricetulus , Citocinas/biosíntesis , Células Dendríticas/citología , Retrovirus Endógenos/genética , Femenino , Expresión Génica , Productos del Gen env/genética , Productos del Gen env/metabolismo , Humanos , Fenotipo , Embarazo , Proteínas Gestacionales/genética , Proteínas Gestacionales/metabolismo , Linfocitos T/metabolismo , Proteínas del Envoltorio Viral/genética
6.
PLoS Pathog ; 10(6): e1004160, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24945304

RESUMEN

The interaction with brain endothelial cells is central to the pathogenicity of Neisseria meningitidis infections. Here, we show that N. meningitidis causes transient activation of acid sphingomyelinase (ASM) followed by ceramide release in brain endothelial cells. In response to N. meningitidis infection, ASM and ceramide are displayed at the outer leaflet of the cell membrane and condense into large membrane platforms which also concentrate the ErbB2 receptor. The outer membrane protein Opc and phosphatidylcholine-specific phospholipase C that is activated upon binding of the pathogen to heparan sulfate proteoglycans, are required for N. meningitidis-mediated ASM activation. Pharmacologic or genetic ablation of ASM abrogated meningococcal internalization without affecting bacterial adherence. In accordance, the restricted invasiveness of a defined set of pathogenic isolates of the ST-11/ST-8 clonal complex into brain endothelial cells directly correlated with their restricted ability to induce ASM and ceramide release. In conclusion, ASM activation and ceramide release are essential for internalization of Opc-expressing meningococci into brain endothelial cells, and this segregates with invasiveness of N. meningitidis strains.


Asunto(s)
Encéfalo/irrigación sanguínea , Ceramidas/metabolismo , Endotelio Vascular/microbiología , Interacciones Huésped-Patógeno , Neisseria meningitidis/patogenicidad , Esfingomielina Fosfodiesterasa/metabolismo , Regulación hacia Arriba , Adhesión Bacteriana/efectos de los fármacos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/microbiología , Línea Celular Transformada , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Membrana Celular/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/enzimología , Microdominios de Membrana/metabolismo , Meningitis Meningocócica/enzimología , Meningitis Meningocócica/metabolismo , Meningitis Meningocócica/microbiología , Microvasos/efectos de los fármacos , Microvasos/metabolismo , Microvasos/microbiología , Mutación , Neisseria meningitidis/fisiología , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Propiedades de Superficie/efectos de los fármacos , Migración Transendotelial y Transepitelial/efectos de los fármacos , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo , Regulación hacia Arriba/efectos de los fármacos
7.
PLoS Pathog ; 10(12): e1004574, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25521388

RESUMEN

T cell paralysis is a main feature of measles virus (MV) induced immunosuppression. MV contact mediated activation of sphingomyelinases was found to contribute to MV interference with T cell actin reorganization. The role of these enzymes in MV-induced inhibition of T cell activation remained equally undefined as their general role in regulating immune synapse (IS) activity which relies on spatiotemporal membrane patterning. Our study for the first time reveals that transient activation of the neutral sphingomyelinase 2 (NSM2) occurs in physiological co-stimulation of primary T cells where ceramide accumulation is confined to the lamellum (where also NSM2 can be detected) and excluded from IS areas of high actin turnover. Genetic ablation of the enzyme is associated with T cell hyper-responsiveness as revealed by actin dynamics, tyrosine phosphorylation, Ca2+-mobilization and expansion indicating that NSM2 acts to suppress overshooting T cell responses. In line with its suppressive activity, exaggerated, prolonged NSM2 activation as occurring in co-stimulated T cells following MV exposure was associated with aberrant compartmentalization of ceramides, loss of spreading responses, interference with accumulation of tyrosine phosphorylated protein species and expansion. Altogether, this study for the first time reveals a role of NSM2 in physiological T cell stimulation which is dampening and can be abused by a virus, which promotes enhanced and prolonged NSM2 activation to cause pathological T cell suppression.


Asunto(s)
Virus del Sarampión/fisiología , Esfingomielina Fosfodiesterasa/fisiología , Factores Supresores Inmunológicos/fisiología , Linfocitos T/fisiología , Linfocitos T/virología , Actinas/fisiología , Antígenos CD28/fisiología , Complejo CD3/fisiología , Células Cultivadas , Ceramidas/fisiología , Humanos , Lípidos de la Membrana/fisiología , Proteínas de la Membrana/fisiología
8.
Cell Microbiol ; 17(2): 241-53, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25224994

RESUMEN

Disseminated gonococcal infection (DGI) is a rare but serious complication caused by the spread of Neisseria gonorrhoeae in the human host. Gonococci associated with DGI mainly express the outer membrane protein PorBIA that binds to the scavenger receptor expressed on endothelial cells (SREC-I) and mediates bacterial uptake. We recently demonstrated that this interaction relies on intact membrane rafts that acquire SREC-I upon attachment of gonococci and initiates the signalling cascade that finally leads to the uptake of gonococci in epithelial cells. In this study, we analysed the role of sphingomyelinases and their breakdown product ceramide. Gonococcal infection induced increased levels of ceramide that was enriched at bacterial attachment sites. Interestingly, neutral but not acid sphingomyelinase was mandatory for PorBIA -mediated invasion into host cells. Neutral sphingomyelinase was required to recruit the PI3 kinase to caveolin and thereby activates the PI3 kinase-dependent downstream signalling leading to bacterial uptake. Thus, this study elucidates the initial signalling processes of bacterial invasion during DGI and demonstrates a novel role for neutral sphingomyelinase in the course of bacterial infections.


Asunto(s)
Endocitosis , Interacciones Huésped-Patógeno , Neisseria gonorrhoeae/fisiología , Porinas/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Células Cultivadas , Ceramidas/metabolismo , Humanos , Transducción de Señal
9.
Biol Chem ; 396(6-7): 585-95, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25525752

RESUMEN

Viruses exploit membranes and their components such as sphingolipids in all steps of their life cycle including attachment and membrane fusion, intracellular transport, replication, protein sorting and budding. Examples for sphingolipid-dependent virus entry are found for: human immunodeficiency virus (HIV), which besides its protein receptors also interacts with glycosphingolipids (GSLs); rhinovirus, which promotes the formation of ceramide-enriched platforms and endocytosis; or measles virus (MV), which induces the surface expression of its own receptor CD150 via activation of sphingomyelinases (SMases). While SMase activation was implicated in Ebola virus (EBOV) attachment, the virus utilizes the cholesterol transporter Niemann-Pick C protein 1 (NPC1) as 'intracellular' entry receptor after uptake into endosomes. Differential activities of SMases also affect the intracellular milieu required for virus replication. Sindbis virus (SINV), for example, replicates better in cells lacking acid SMase (ASMase). Defined lipid compositions of viral assembly and budding sites influence virus release and infectivity, as found for hepatitis C virus (HCV) or HIV. And finally, viruses manipulate cellular signaling and the sphingolipid metabolism to their advantage, as for example influenza A virus (IAV), which activates sphingosine kinase 1 and the transcription factor NF-κB.


Asunto(s)
Esfingolípidos/metabolismo , Fenómenos Fisiológicos de los Virus , Línea Celular , Ceramidas/metabolismo , Humanos , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Internalización del Virus
10.
J Gen Virol ; 95(Pt 8): 1809-1815, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24784415

RESUMEN

HIV-1 mediates pro-survival signals and prevents apoptosis via the phosphatidylinositol-3-kinase (PI3K) pathway. This pathway, however, also affects phosphorylation of serine-arginine (SR) proteins, a family of splicing regulatory factors balancing splice site selection. We now show that pharmacologic inhibition of PI3K signalling alters the HIV-1 splicing pattern of both minigene- and provirus-derived mRNAs. This indicates that HIV-1 might also promote PI3K signalling to balance processing of its transcripts by regulating phosphorylation of splicing regulatory proteins.


Asunto(s)
Regulación Viral de la Expresión Génica , VIH-1/genética , Interacciones Huésped-Patógeno , Fosfatidilinositol 3-Quinasas/metabolismo , Precursores del ARN/metabolismo , Empalme del ARN
11.
Cell Physiol Biochem ; 34(1): 20-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24977478

RESUMEN

Measles virus (MV) efficiently causes generalized immunosuppression which accounts to a major extent for cases of measles-asscociated severe morbidity and mortality. MV infections alter many functions of antigen presenting cells (APC) (dendritic cells (DCs)) and lymphocytes, yet many molecular targets of the virus remain poorly defined. Cellular interactions and effector functions of DCs and lymphocytes are regulated by surface receptors. Associating with other proteins involved in cell signaling, receptors form part of receptosomes that respond to and transmit external signals through dynamic interctions with the cytoskeleton. Alterations in the composition and metabolism of membrane sphingolipids have a substantial impact on both processes. In this review we focus on the regulation of sphingomyelinase activity and ceramide release in cells exposed to MV and discuss the immunosuppressive role of sphingomyelin breakdown induced by MV.


Asunto(s)
Virus del Sarampión/patogenicidad , Esfingomielinas/metabolismo , Citoesqueleto de Actina/metabolismo , Ceramidas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Humanos , Tolerancia Inmunológica , Virus del Sarampión/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo
12.
Cell Microbiol ; 15(2): 161-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22963539

RESUMEN

Viral entry, compartmentalization and transmission depend on the formation of membrane lipid/protein microdomains concentrating receptors and signalosomes. Dendritic cells (DCs) are prime targets for measles virus (MV) infection, and this interaction promotes immune activation and generalized immunosuppression, yet also MV transport to secondary lymphatics where transmission to T cells occurs. In addition to MV trapping, DC-SIGN interaction can enhance MV uptake by activating cellular sphingomyelinases and, thereby, vertical surface transport of its entry receptor CD150. To exploit DCs as Trojan horses for transport, MV promotes DC maturation accompanied by mobilization, and restrictions of viral replication in these cells may support this process. MV-infected DCs are unable to support formation of functional immune synapses with conjugating T cells and signalling via viral glycoproteins or repulsive ligands (such as semaphorins) plays a key role in the induction of T-cell paralysis. In the absence of antigen recognition, MV transmission from infected DCs to T cells most likely involves formation of polyconjugates which concentrate viral structural proteins, viral receptors and with components enhancing either viral uptake or conjugate stability. Because DCs barely support production of infectious MV particles, these organized interfaces are likely to represent virological synapses essential for MV transmission.


Asunto(s)
Membrana Celular/metabolismo , Células Dendríticas/metabolismo , Virus del Sarampión/metabolismo , Sarampión/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Membrana Celular/química , Membrana Celular/virología , Células Dendríticas/inmunología , Células Dendríticas/virología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Sarampión/inmunología , Sarampión/transmisión , Sarampión/virología , Virus del Sarampión/inmunología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores Virales/genética , Receptores Virales/metabolismo , Transducción de Señal , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Esfingomielina Fosfodiesterasa/metabolismo , Linfocitos T/patología , Linfocitos T/virología , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/metabolismo , Replicación Viral
13.
J Virol ; 86(18): 9773-81, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22761368

RESUMEN

Transmission of measles virus (MV) to T cells by its early CD150(+) target cells is considered to be crucial for viral dissemination within the hematopoietic compartment. Using cocultures involving monocyte-derived dendritic cells (DCs) and T cells, we now show that T cells acquire MV most efficiently from cis-infected DCs rather than DCs having trapped MV (trans-infection). Transmission involves interactions of the viral glycoprotein H with its receptor CD150 and is therefore more efficient to preactivated T cells. In addition to rare association with actin-rich filopodial structures, the formation of contact interfaces consistent with that of virological synapses (VS) was observed where viral proteins accumulated and CD150 was redistributed in an actin-dependent manner. In addition to these molecules, activated LFA-1, DC-SIGN, CD81, and phosphorylated ezrin-radixin-moesin proteins, which also mark the HIV VS, redistributed toward the MV VS. Most interestingly, moesin and substance P receptor, both implicated earlier in assisting MV entry or cell-to-cell transmission, also partitioned to the transmission structure. Altogether, the MV VS shares important similarities to the HIV VS in concentrating cellular components potentially regulating actin dynamics, conjugate stability, and membrane fusion as required for efficient entry of MV into target T cells.


Asunto(s)
Células Dendríticas/virología , Sinapsis Inmunológicas/virología , Virus del Sarampión/fisiología , Virus del Sarampión/patogenicidad , Linfocitos T/virología , Antígenos CD/metabolismo , Moléculas de Adhesión Celular/metabolismo , Células Dendríticas/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Técnicas In Vitro , Lectinas Tipo C/metabolismo , Sarampión/inmunología , Sarampión/transmisión , Sarampión/virología , Virus del Sarampión/inmunología , Receptores de Superficie Celular/metabolismo , Receptores Virales/metabolismo , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Linfocitos T/inmunología , Proteínas Virales/inmunología
14.
PLoS Pathog ; 7(2): e1001290, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21379338

RESUMEN

As pattern recognition receptor on dendritic cells (DCs), DC-SIGN binds carbohydrate structures on its pathogen ligands and essentially determines host pathogen interactions because it both skews T cell responses and enhances pathogen uptake for cis infection and/or T cell trans-infection. How these processes are initiated at the plasma membrane level is poorly understood. We now show that DC-SIGN ligation on DCs by antibodies, mannan or measles virus (MV) causes rapid activation of neutral and acid sphingomyelinases followed by accumulation of ceramides in the outer membrane leaflet. SMase activation is important in promoting DC-SIGN signaling, but also for enhancement of MV uptake into DCs. DC-SIGN-dependent SMase activation induces efficient, transient recruitment of CD150, which functions both as MV uptake receptor and microbial sensor, from an intracellular Lamp-1+ storage compartment shared with acid sphingomyelinase (ASM) within a few minutes. Subsequently, CD150 is displayed at the cell surface and co-clusters with DC-SIGN. Thus, DC-SIGN ligation initiates SMase-dependent formation of ceramide-enriched membrane microdomains which promote vertical segregation of CD150 from intracellular storage compartments along with ASM. Given the ability to promote receptor and signalosome co-segration into (or exclusion from) ceramide enriched microdomains which provide a favorable environment for membrane fusion, DC-SIGN-dependent SMase activation may be of general importance for modes and efficiency of pathogen uptake into DCs, and their routing to specific compartments, but also for modulating T cell responses.


Asunto(s)
Antígenos CD/metabolismo , Moléculas de Adhesión Celular/metabolismo , Ceramidas/metabolismo , Células Dendríticas/virología , Lectinas Tipo C/metabolismo , Virus del Sarampión/crecimiento & desarrollo , Receptores de Superficie Celular/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Presentación de Antígeno , Antígenos CD/genética , Western Blotting , Moléculas de Adhesión Celular/genética , Células Cultivadas , Células Dendríticas/metabolismo , Citometría de Flujo , Humanos , Inmunoprecipitación , Lectinas Tipo C/genética , Sarampión , Virus del Sarampión/genética , Virus del Sarampión/inmunología , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/genética , Receptores Virales/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Linfocitos T/virología
15.
Handb Exp Pharmacol ; (216): 321-40, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23563664

RESUMEN

Besides their essential role in the immune system, sphingolipids and their metabolites are potential key regulators in the life cycle of obligatory intracellular pathogens such as viruses. They are involved in lateral and vertical segregation of receptors required for attachment, membrane fusion and endocytosis, as well as in the intracellular replication, assembly and release of viruses. Glycosphingolipids may themselves act as receptors for viruses, such as Galactosylceramide for human immunodeficiency virus (HIV). In addition, sphingolipids and their metabolites are inseparably interwoven in signal transduction processes, dynamic alterations of the cytoskeleton, and the regulation of innate and intrinsic responses of infected target cells. Depending on the nature of the intracellular pathogen, they may support or inhibit infections. Understanding of the underlying mechanisms depending on the specific virus, immune control, and type of disease may open new avenues for therapeutic interventions.


Asunto(s)
Transducción de Señal , Esfingolípidos/metabolismo , Virosis/metabolismo , Virus/patogenicidad , Animales , Antivirales/farmacología , Diseño de Fármacos , Interacciones Huésped-Patógeno , Humanos , Transducción de Señal/efectos de los fármacos , Virosis/tratamiento farmacológico , Virosis/virología , Internalización del Virus , Replicación Viral , Virus/efectos de los fármacos
16.
Eur J Immunol ; 41(1): 151-63, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21182086

RESUMEN

Measles virus (MV)-infected DC fail to promote T-cell expansion, and this could explain important aspects of measles immunosuppression. The efficiency of the immune synapse (IS) is determined by the formation of stable, stimulatory conjugates involving a spatially and timely controlled architecture. PlexinA1 (plexA1) and its co-receptor neuropilin (NP-1) have been implicated in IS efficiency, while their repulsive ligand, SEMA3A, likely acts in terminating T-cell activation. Conjugates involving MV-infected DC and T cells are unstable and not stimulatory, and thus we addressed the potential role of plexA1/NP-1 and semaphorins (SEMAs) in this system. MV does not grossly affect expression levels of plexA1/NP-1 on T cells or DC, yet prevents their recruitment towards stimulatory interfaces. Moreover, MV infection promoted early release of SEMA3A from DC, which caused loss of actin based protrusions on T cells as did the plexA4 ligand SEMA6A. SEMA3A/6A differentially modulated chemokinetic migration of T cells and conjugation with allogeneic DC. Thus, MV targets SEMA receptor function both at the level of IS recruitment, and by promoting a timely inappropriate release of their repulsive ligand, SEMA3A. To the best of our knowledge, this is the first example of viral targeting of SEMA receptor function in the IS.


Asunto(s)
Comunicación Celular/inmunología , Células Dendríticas/inmunología , Virus del Sarampión/inmunología , Proteínas del Tejido Nervioso/inmunología , Neuropilina-1/inmunología , Receptores de Superficie Celular/inmunología , Semaforinas/inmunología , Movimiento Celular/inmunología , Células Dendríticas/virología , Humanos , Sinapsis Inmunológicas/virología , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Linfocitos T/virología
17.
J Virol ; 85(15): 7710-8, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21593150

RESUMEN

Transient lymphopenia is a hallmark of measles virus (MV)-induced immunosuppression. To address to what extent replenishment of the peripheral lymphocyte compartment from bone marrow (BM) progenitor/stem cells might be affected, we analyzed the interaction of wild-type MV with hematopoietic stem and progenitor cells (HS/PCs) and stroma cells in vitro. Infection of human CD34(+) HS/PCs or stroma cells with wild-type MV is highly inefficient yet noncytolytic. It occurs independently of CD150 in stroma cells but also in HS/PCs, where infection is established in CD34(+) CD150(-) and CD34(+) CD150(+) (in humans representing HS/PC oligopotent precursors) subsets. Stroma cells and HS/PCs can mutually transmit MV and may thereby create a possible niche for continuous viral exchange in the BM. Infected lymphocytes homing to this compartment may serve as sources for HS/PC or stroma cell infection, as reflected by highly efficient transmission of MV from both populations in cocultures with MV-infected B or T cells. Though MV exposure does not detectably affect the viability, expansion, and colony-forming activity of either CD150(+) or CD150(-) HS/PCs in vitro, it efficiently interferes with short- but not long-term hematopoietic reconstitution in NOD/SCID mice. Altogether, these findings support the hypothesis that MV accession of the BM compartment by infected lymphocytes may contribute to peripheral blood mononuclear cell lymphopenia at the level of BM suppression.


Asunto(s)
Antígenos CD34/inmunología , Células Madre Hematopoyéticas/citología , Virus del Sarampión/fisiología , Animales , Separación Celular , Citometría de Flujo , Células Madre Hematopoyéticas/inmunología , Humanos , Masculino , Ratones , Ratones Endogámicos NOD
18.
Cells ; 11(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-36010608

RESUMEN

SARS-CoV-2 variants such as the delta or omicron variants, with higher transmission rates, accelerated the global COVID-19 pandemic. Thus, novel therapeutic strategies need to be deployed. The inhibition of acid sphingomyelinase (ASM), interfering with viral entry by fluoxetine was reported. Here, we described the acid ceramidase as an additional target of fluoxetine. To discover these effects, we synthesized an ASM-independent fluoxetine derivative, AKS466. High-resolution SARS-CoV-2-RNA FISH and RTqPCR analyses demonstrate that AKS466 down-regulates viral gene expression. It is shown that SARS-CoV-2 deacidifies the lysosomal pH using the ORF3 protein. However, treatment with AKS488 or fluoxetine lowers the lysosomal pH. Our biochemical results show that AKS466 localizes to the endo-lysosomal replication compartments of infected cells, and demonstrate the enrichment of the viral genomic, minus-stranded RNA and mRNAs there. Both fluoxetine and AKS466 inhibit the acid ceramidase activity, cause endo-lysosomal ceramide elevation, and interfere with viral replication. Furthermore, Ceranib-2, a specific acid ceramidase inhibitor, reduces SARS-CoV-2 replication and, most importantly, the exogenous supplementation of C6-ceramide interferes with viral replication. These results support the hypotheses that the acid ceramidase is a SARS-CoV-2 host factor.


Asunto(s)
Ceramidasa Ácida , Tratamiento Farmacológico de COVID-19 , Ceramidasa Ácida/genética , Ceramidasa Ácida/metabolismo , Fluoxetina , Humanos , Pandemias , ARN , SARS-CoV-2
19.
PLoS Pathog ; 5(10): e1000623, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19834551

RESUMEN

Silencing of T cell activation and function is a highly efficient strategy of immunosuppression induced by pathogens. By promoting formation of membrane microdomains essential for clustering of receptors and signalling platforms in the plasma membrane, ceramides accumulating as a result of membrane sphingomyelin breakdown are not only essential for assembly of signalling complexes and pathogen entry, but also act as signalling modulators, e. g. by regulating relay of phosphatidyl-inositol-3-kinase (PI3K) signalling. Their role in T lymphocyte functions has not been addressed as yet. We now show that measles virus (MV), which interacts with the surface of T cells and thereby efficiently interferes with stimulated dynamic reorganisation of their actin cytoskeleton, causes ceramide accumulation in human T cells in a neutral (NSM) and acid (ASM) sphingomyelinase-dependent manner. Ceramides induced by MV, but also bacterial sphingomyelinase, efficiently interfered with formation of membrane protrusions and T cell spreading and front/rear polarisation in response to beta1 integrin ligation or alphaCD3/CD28 activation, and this was rescued upon pharmacological or genetic ablation of ASM/NSM activity. Moreover, membrane ceramide accumulation downmodulated chemokine-induced T cell motility on fibronectin. Altogether, these findings highlight an as yet unrecognised concept of pathogens able to cause membrane ceramide accumulation to target essential processes in T cell activation and function by preventing stimulated actin cytoskeletal dynamics.


Asunto(s)
Membrana Celular/metabolismo , Ceramidas/metabolismo , Citoesqueleto/metabolismo , Tolerancia Inmunológica , Linfocitos T/virología , Animales , Células Cultivadas , Citoesqueleto/virología , Humanos , Tolerancia Inmunológica/inmunología , Células Jurkat , Activación de Linfocitos/inmunología , Virus del Sarampión/inmunología , Virus del Sarampión/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Esfingomielina Fosfodiesterasa/fisiología , Linfocitos T/inmunología , Linfocitos T/metabolismo
20.
Cell Signal ; 82: 109959, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33631318

RESUMEN

Insulin is the main anabolic hormone secreted by ß-cells of the pancreas stimulating the assimilation and storage of glucose in muscle and fat cells. It modulates the postprandial balance of carbohydrates, lipids and proteins via enhancing lipogenesis, glycogen and protein synthesis and suppressing glucose generation and its release from the liver. Resistance to insulin is a severe metabolic disorder related to a diminished response of peripheral tissues to the insulin action and signaling. This leads to a disturbed glucose homeostasis that precedes the onset of type 2 diabetes (T2D), a disease reaching epidemic proportions. A large number of studies reported an association between elevated circulating fatty acids and the development of insulin resistance. The increased fatty acid lipid flux results in the accumulation of lipid droplets in a variety of tissues. However, lipid intermediates such as diacylglycerols and ceramides are also formed in response to elevated fatty acid levels. These bioactive lipids have been associated with the pathogenesis of insulin resistance. More recently, sphingosine 1-phosphate (S1P), another bioactive sphingolipid derivative, has also been shown to increase in T2D and obesity. Although many studies propose a protective role of S1P metabolism on insulin signaling in peripheral tissues, other studies suggest a causal role of S1P on insulin resistance. In this review, we critically summarize the current state of knowledge of S1P metabolism and its modulating role on insulin resistance. A particular emphasis is placed on S1P and insulin signaling in hepatocytes, skeletal muscle cells, adipocytes and pancreatic ß-cells. In particular, modulation of receptors and enzymes that regulate S1P metabolism can be considered as a new therapeutic option for the treatment of insulin resistance and T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Lisofosfolípidos/metabolismo , Obesidad/metabolismo , Esfingosina/análogos & derivados , Adipocitos/citología , Adipocitos/metabolismo , Adipocitos/patología , Animales , Hepatocitos/citología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Resistencia a la Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Esfingosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA