Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Plant Cell ; 35(11): 3973-4001, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37282730

RESUMEN

Leaf and floral tissue degeneration is a common feature in plants. In cereal crops such as barley (Hordeum vulgare L.), pre-anthesis tip degeneration (PTD) starts with growth arrest of the inflorescence meristem dome, which is followed basipetally by the degeneration of floral primordia and the central axis. Due to its quantitative nature and environmental sensitivity, inflorescence PTD constitutes a complex, multilayered trait affecting final grain number. This trait appears to be highly predictable and heritable under standardized growth conditions, consistent with a developmentally programmed mechanism. To elucidate the molecular underpinnings of inflorescence PTD, we combined metabolomic, transcriptomic, and genetic approaches to show that barley inflorescence PTD is accompanied by sugar depletion, amino acid degradation, and abscisic acid responses involving transcriptional regulators of senescence, defense, and light signaling. Based on transcriptome analyses, we identified GRASSY TILLERS1 (HvGT1), encoding an HD-ZIP transcription factor, as an important modulator of inflorescence PTD. A gene-edited knockout mutant of HvGT1 delayed PTD and increased differentiated apical spikelets and final spikelet number, suggesting a possible strategy to increase grain number in cereals. We propose a molecular framework that leads to barley PTD, the manipulation of which may increase yield potential in barley and other related cereals.


Asunto(s)
Hordeum , Inflorescencia , Hordeum/genética , Hordeum/metabolismo , Hojas de la Planta/metabolismo , Meristema/genética , Perfilación de la Expresión Génica , Grano Comestible/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38243866

RESUMEN

Vascular plants have segmented body axes with iterative nodes and internodes. Appropriate node initiation and internode elongation are fundamental to plant fitness and crop yield; however, how these events are spatiotemporally coordinated remains elusive. We show that in barley (Hordeum vulgare L.), selections during domestication have extended the apical meristematic phase to promote node initiation, but constrained subsequent internode elongation. In both vegetative and reproductive phases, internode elongation displays a dynamic proximal-distal gradient, and among subpopulations of domesticated barleys worldwide, node initiation and proximal internode elongation are associated with latitudinal and longitudinal gradients, respectively. Genetic and functional analyses suggest that, in addition to their converging roles in node initiation, flowering-time genes have been repurposed to specify the timing and duration of internode elongation. Our study provides an integrated view of barley node initiation and internode elongation and suggests that plant architecture should be recognized as a collection of dynamic phytomeric units in the context of crop adaptive evolution.


Asunto(s)
Adaptación Biológica , Hordeum , Hordeum/genética , Hordeum/crecimiento & desarrollo , Domesticación
3.
New Phytol ; 242(1): 107-120, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38326944

RESUMEN

How plants distribute biomass among organs influences resource acquisition, reproduction and plant-plant interactions, and is essential in understanding plant ecology, evolution, and yield production in agriculture. However, the genetic mechanisms regulating allocation responses to the environment are largely unknown. We studied recombinant lines of wheat (Triticum spp.) grown as single plants under sunlight and simulated canopy shade to investigate genotype-by-environment interactions in biomass allocation to the leaves, stems, spikes, and grains. Size-corrected mass fractions and allometric slopes were employed to dissect allocation responses to light limitation and plant size. Size adjustments revealed light-responsive alleles associated with adaptation to the crop environment. Combined with an allometric approach, we demonstrated that polymorphism in the DELLA protein is associated with the response to shade and size. While a gibberellin-sensitive allelic effect on stem allocation was amplified when plants were shaded, size-dependent effects of this allele drive allocation to reproduction, suggesting that the ontogenetic trajectory of the plant affects the consequences of shade responses for allocation. Our approach provides a basis for exploring the genetic determinants underlying investment strategies in the face of different resource constraints and will be useful in predicting social behaviours of individuals in a crop community.


Asunto(s)
Plantas , Triticum , Humanos , Biomasa , Triticum/genética , Luz Solar , Genotipo , Hojas de la Planta/genética
4.
J Exp Bot ; 75(1): 88-102, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37739800

RESUMEN

Introducing variations in inflorescence architecture, such as the 'Miracle-Wheat' (Triticum turgidum convar. compositum (L.f.) Filat.) with a branching spike, has relevance for enhancing wheat grain yield. However, in the spike-branching genotypes, the increase in spikelet number is generally not translated into grain yield advantage because of reduced grains per spikelet and grain weight. Here, we investigated if such trade-offs might be a function of source-sink strength by using 385 recombinant inbred lines developed by intercrossing the spike-branching landrace TRI 984 and CIRNO C2008, an elite durum (T. durum L.) cultivar; they were genotyped using the 25K array. Various plant and spike architectural traits, including flag leaf, peduncle, and spike senescence rate, were phenotyped under field conditions for 2 consecutive years. On chromosome 5AL, we found a new modifier QTL for spike branching, branched headt3 (bht-A3), which was epistatic to the previously known bht-A1 locus. Besides, bht-A3 was associated with more grains per spikelet and a delay in flag leaf senescence rate. Importantly, favourable alleles, viz. bht-A3 and grain protein content (gpc-B1) that delayed senescence, are required to improve grain number and grain weight in the spike-branching genotypes. In summary, achieving a balanced source-sink relationship might minimize grain yield trade-offs in Miracle-Wheat.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Triticum/metabolismo , Sitios de Carácter Cuantitativo/genética , Alelos , Grano Comestible/genética , Fenotipo
5.
J Exp Bot ; 75(10): 2900-2916, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38366171

RESUMEN

The HD-ZIP class I transcription factor Homeobox 1 (HvHOX1), also known as Vulgare Row-type Spike 1 (VRS1) or Six-rowed Spike 1, regulates lateral spikelet fertility in barley (Hordeum vulgare L.). It was shown that HvHOX1 has a high expression only in lateral spikelets, while its paralog HvHOX2 was found to be expressed in different plant organs. Yet, the mechanistic functions of HvHOX1 and HvHOX2 during spikelet development are still fragmentary. Here, we show that compared with HvHOX1, HvHOX2 is more highly conserved across different barley genotypes and Hordeum species, hinting at a possibly vital but still unclarified biological role. Using bimolecular fluorescence complementation, DNA-binding, and transactivation assays, we validate that HvHOX1 and HvHOX2 are bona fide transcriptional activators that may potentially heterodimerize. Accordingly, both genes exhibit similar spatiotemporal expression patterns during spike development and growth, albeit their mRNA levels differ quantitatively. We show that HvHOX1 delays the lateral spikelet meristem differentiation and affects fertility by aborting the reproductive organs. Interestingly, the ancestral relationship of the two genes inferred from their co-expressed gene networks suggested that HvHOX1 and HvHOX2 might play a similar role during barley spikelet development. However, CRISPR-derived mutants of HvHOX1 and HvHOX2 demonstrated the suppressive role of HvHOX1 on lateral spikelets, while the loss of HvHOX2 does not influence spikelet development. Collectively, our study shows that through the suppression of reproductive organs, lateral spikelet fertility is regulated by HvHOX1, whereas HvHOX2 is dispensable for spikelet development in barley.


Asunto(s)
Hordeum , Proteínas de Plantas , Hordeum/genética , Hordeum/crecimiento & desarrollo , Hordeum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
6.
Ann Bot ; 133(7): 983-996, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38407464

RESUMEN

BACKGROUND AND AIMS: Vascular patterning is intimately related to plant form and function. Here, using barley (Hordeum vulgare) as a model, we studied the vascular anatomy of the spike-type inflorescence. The main aim of the present work was to clarify the relationship between rachis (spike axis) vasculature and spike size, to define vascular dynamics and to discuss the implications for transport capacity and its interaction with the spikelets. METHODS: We used serial transverse internode sections to determine the internode area, vascular area and number of veins along the rachis of several barley lines. KEY RESULTS: Internode area and total vascular area show a clear positive correlation with spike size, whereas the number of veins is only weakly correlated. The lateral periphery of the rachis contains large mature veins of constant size, whereas the central part is occupied by small immature veins. Spikelet-derived veins entering the rachis often merge with the immature rachis veins but never merge with the mature veins. An increase in floret fertility through the conversion of a two-rowed barley into an isogenic six-rowed line, in addition to a decrease in floret fertility owing to enhanced pre-anthesis tip degeneration caused by the mutation tip sterile 2.b (tst2.b), significantly affected vein size but had limited to no effects on the number of veins or internode area. CONCLUSIONS: The rachis vasculature is the result of a two-step process involving an initial layout followed by size adjustment according to floret fertility/spike size. The restriction of large mature vessels to the periphery and that of small immature vessels to the centre of the rachis suggests that long-distance transport and local supply to spikelets are spatially separated processes. The identification of spikelet-derived veins entering the rachis without fusing with its vasculature indicates that a vascular continuity between rachis and spikelets might be non-essential.


Asunto(s)
Hordeum , Haz Vascular de Plantas , Hordeum/anatomía & histología , Hordeum/crecimiento & desarrollo , Hordeum/fisiología , Haz Vascular de Plantas/anatomía & histología , Haz Vascular de Plantas/fisiología , Haz Vascular de Plantas/crecimiento & desarrollo , Transporte Biológico , Inflorescencia/anatomía & histología , Inflorescencia/crecimiento & desarrollo , Inflorescencia/fisiología
7.
Plant Cell Environ ; 46(10): 3144-3157, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36428231

RESUMEN

The genetic heritage of wheat (Triticum spp.) crops has been shaped by millions of years of predomestication natural selection, often driven by competition among individuals. However, genetic improvements in yield potential are thought to involve selection towards reduced competitiveness, thus enhancing adaptation to the crop environment. We investigated potential trade-offs between individual plant fitness and community performance using a population of introgression lines carrying chromosome segments of wild emmer (nondomesticated) in the background of an elite durum cultivar. We focused on light as a primary factor affecting plant-plant interactions and assessed morphological and biomass phenotypes of single plants grown in mixtures under sunlight and a simulated canopy shade, and the relevance of these phenotypes for the monoculture community in the field. We found that responses to canopy shade resemble responses to high density and contribute to both the individual and the community. Stepwise regressions suggested that grain number per spike and its persistence under shade are essential attributes of productive communities, advocating their use as a breeding target during early-generation selection. Overall, multiple phenotypes attained under shade could better explain community performance. Our novel, applicable, high-throughput set-up provides new prospects for studying and selecting single-plant phenotypes in a canopy-like environment.


Asunto(s)
Productos Agrícolas , Triticum , Triticum/genética , Productos Agrícolas/genética , Fenotipo , Grano Comestible/genética , Luz Solar
8.
J Exp Bot ; 73(7): 2005-2020, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-34864992

RESUMEN

The potential to increase barley grain yield lies in the indeterminate nature of its inflorescence meristem, which produces spikelets, the basic reproductive unit in grasses that are linked to reproductive success. During early reproductive growth, barley spikes pass through the maximum yield potential-a stage after which no new spikelet ridges are produced. Subsequently, spikelet abortion (SA), a phenomenon in which spikelets abort during spike growth, imposes a bottleneck for increasing the grain yield potential. Here, we studied the potential of main culm spikes by counting potential spikelet number (PSN) and final spikelet number (FSN), and computed the corresponding SA (%) in a panel of 417 six-rowed spring barleys. Our phenotypic data analyses showed a significantly large within- and across-years genotypic variation with high broad-sense heritability estimates for all the investigated traits, including SA. Asian accessions displayed the lowest SA, indicating the presence of favourable alleles that may be exploited in breeding programs. A significantly negative Pearson's product-moment correlation was observed between FSN and SA. Our path analysis revealed that PSN and FSN explain 93% of the observed phenotypic variability for SA, with PSN behaving as a suppressor trait that magnifies the effect of FSN. Based on a large set of diverse barley accessions, our results provide a deeper phenotypic understanding of the quantitative genetic nature of SA, its association with traits of high agronomic importance, and a resource for further genetic analyses.


Asunto(s)
Hordeum , Grano Comestible/genética , Hordeum/genética , Inflorescencia/genética , Fenotipo , Fitomejoramiento
9.
Theor Appl Genet ; 135(2): 571-590, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34773464

RESUMEN

KEY MESSAGE: Spikelet indeterminacy and supernumerary spikelet phenotypes in barley multiflorus2.b mutant show polygenic inheritance. Genetic analysis of multiflorus2.b revealed major QTLs for spikelet determinacy and supernumerary spikelet phenotypes on 2H and 6H chromosomes. Understanding the genetic basis of yield forming factors in small grain cereals is of extreme importance, especially in the wake of stagnation of further yield gains in these crops. One such yield forming factor in these cereals is the number of grain-bearing florets produced per spikelet. Wild-type barley (Hordeum vulgare L.) spikelets are determinate structures, and the spikelet axis (rachilla) degenerates after producing single floret. In contrast, the rachilla of wheat (Triticum ssp.) spikelets, which are indeterminate, elongates to produce up to 12 florets. In our study, we characterized the barley spikelet determinacy mutant multiflorus2.b (mul2.b) that produced up to three fertile florets on elongated rachillae of lateral spikelets. Apart from the lateral spikelet indeterminacy (LS-IN), we also characterized the supernumerary spikelet phenotype in the central spikelets (CS-SS) of mul2.b. Through our phenotypic and genetic analyses, we identified two major QTLs on chromosomes 2H and 6H, and two minor QTLs on 3H for the LS-IN phenotype. For, the CS-SS phenotype, we identified one major QTL on 6H, and a minor QTL on 5H chromosomes. Notably, the 6H QTLs for CS-SS and LS-IN phenotypes co-located with each other, potentially indicating that a single genetic factor might regulate both phenotypes. Thus, our in-depth phenotyping combined with genetic analyses revealed the quantitative nature of the LS-IN and CS-SS phenotypes in mul2.b, paving the way for cloning the genes underlying these QTLs in the future.


Asunto(s)
Hordeum , Grano Comestible/genética , Variación Genética , Hordeum/genética , Sitios de Carácter Cuantitativo , Triticum/genética
10.
Proc Natl Acad Sci U S A ; 116(11): 5182-5187, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30792353

RESUMEN

Floret fertility is a key determinant of the number of grains per inflorescence in cereals. During the evolution of wheat (Triticum sp.), floret fertility has increased, such that current bread wheat (Triticum aestivum) cultivars set three to five grains per spikelet. However, little is known regarding the genetic basis of floret fertility. The locus Grain Number Increase 1 (GNI1) is shown here to be an important contributor to floret fertility. GNI1 evolved in the Triticeae through gene duplication. The gene, which encodes a homeodomain leucine zipper class I (HD-Zip I) transcription factor, was expressed most abundantly in the most apical floret primordia and in parts of the rachilla, suggesting that it acts to inhibit rachilla growth and development. The level of GNI1 expression has decreased over the course of wheat evolution under domestication, leading to the production of spikes bearing more fertile florets and setting more grains per spikelet. Genetic analysis has revealed that the reduced-function allele GNI-A1 contributes to the increased number of fertile florets per spikelet. The RNAi-based knockdown of GNI1 led to an increase in the number of both fertile florets and grains in hexaploid wheat. Mutants carrying an impaired GNI-A1 allele out-yielded WT allele carriers under field conditions. The data show that gene duplication generated evolutionary novelty affecting floret fertility while mutations favoring increased grain production have been under selection during wheat evolution under domestication.


Asunto(s)
Fertilidad/genética , Flores/genética , Flores/fisiología , Genes Homeobox , Mutación/genética , Triticum/genética , Triticum/fisiología , Alelos , Clonación Molecular , Evolución Molecular , Flores/anatomía & histología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ploidias , Sitios de Carácter Cuantitativo/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Triticum/anatomía & histología
11.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36232362

RESUMEN

Increased salinity is one of the major consequences of climatic change affecting global crop production. The early stages in the barley (Hordeum vulgare L.) life cycle are considered the most critical phases due to their contributions to final crop yield. Particularly, the germination and seedling development are sensitive to numerous environmental stresses, especially soil salinity. In this study, we aimed to identify SNP markers linked with germination and seedling development at 150 mM NaCl as a salinity treatment. We performed a genome-wide association study (GWAS) using a panel of 208 intermedium-spike barley (H. vulgare convar. intermedium (Körn.) Mansf.) accessions and their genotype data (i.e., 10,323 SNPs) using the genome reference sequence of "Morex". The phenotypic results showed that the 150 mM NaCl salinity treatment significantly reduced all recorded germination and seedling-related traits compared to the control treatment. Furthermore, six accessions (HOR 11747, HOR 11718, HOR 11640, HOR 11256, HOR 11275 and HOR 11291) were identified as the most salinity tolerant from the intermedium-spike barley collection. GWAS analysis indicated that a total of 38 highly significantly associated SNP markers under control and/or salinity traits were identified. Of these, two SNP markers on chromosome (chr) 1H, two on chr 3H, and one on chr 4H were significantly linked to seedling fresh and dry weight under salinity stress treatment. In addition, two SNP markers on chr 7H were also significantly associated with seedling fresh and dry weight but under control condition. Under salinity stress, one SNP marker on chr 1H, 5H and 7H were detected for more than one phenotypic trait. We found that in most of the accessions exhibiting the highest salinity tolerance, most of the salinity-related QTLs were presented. These results form the basis for detailed studies, leading to improved salt tolerance breeding programs in barley.


Asunto(s)
Hordeum , Estudio de Asociación del Genoma Completo , Germinación/genética , Hordeum/genética , Fitomejoramiento , Tolerancia a la Sal/genética , Plantones/genética , Cloruro de Sodio/farmacología , Suelo
12.
J Exp Bot ; 72(22): 7743-7753, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34291795

RESUMEN

Determining the grain yield potential contributed by grain number is a step towards advancing the yield of cereal crops. To achieve this aim, it is pivotal to recognize the maximum yield potential (MYP) of the crop. In barley (Hordeum vulgare L.), the MYP is defined as the maximum spikelet primordia number of a spike. Many barley studies assumed the awn primordium (AP) stage to be the MYP stage regardless of genotypes and growth conditions. From our spikelet-tracking experiments using the two-rowed cultivar Bowman, we found that the MYP stage can be different from the AP stage. Importantly, we find that the occurrence of inflorescence meristem deformation and its loss of activity coincided with the MYP stage, indicating the end of further spikelet initiation. Thus, we recommend validating the barley MYP stage with the shape of the inflorescence meristem and propose this approach (named 'spikelet stop') for MYP staging. To clarify the relevance of AP and MYP stages, we compared the MYP stage and the MYP in 27 barley accessions (two- and six-rowed accessions) grown in the greenhouse and in the field. Our results reveal that the MYP stage can be reached at various developmental stages, which greatly depend on the genotype and growth conditions. Furthermore, we propose that the MYP stage and the time to reach the MYP stage can be used to determine yield potential in barley. Based on our findings, we suggest key steps for the identification of the MYP stage in barley that may also be applied in a related crop such as wheat.


Asunto(s)
Hordeum , Grano Comestible , Hordeum/genética , Inflorescencia , Meristema , Triticum
13.
J Exp Bot ; 72(22): 7754-7768, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34460900

RESUMEN

Gaining knowledge on fundamental interactions of various yield components is crucial to improve yield potential in small grain cereals. It is well known in barley that increasing grain number greatly improves yield potential; however, the yield components determining grain number and their association in barley row types are less explored. In this study, we assessed different yield components such as potential spikelet number (PSN), spikelet survival (SSL), spikelet number (SN), grain set (GS), and grain survival (GSL), as well as their interactions with grain number by using a selected panel of two- and six-rowed barley types. Also, to analyze the stability of these interactions, we performed the study in the greenhouse and the field. From this study, we found that in two-rowed barley, grain number determination is strongly influenced by PSN rather than SSL and/or GS in both growth conditions. Conversely, in six-rowed barley, grain number is associated with SSL instead of PSN and/or GS. Thus, our study showed that increasing grain number might be possible by augmenting PSN in two-rowed genotypes, while for six-rowed genotypes SSL needs to be improved. We speculate that this disparity of grain number determination in barley row types might be due to the fertility of lateral spikelets. Collectively, this study revealed that grain number in two-rowed barley largely depends on the developmental trait, PSN, while in six-rowed barley, it mainly follows the ability for SSL.


Asunto(s)
Hordeum , Grano Comestible , Genotipo , Hordeum/genética , Fenotipo
14.
Theor Appl Genet ; 134(7): 1925-1943, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33961064

RESUMEN

KEY MESSAGE: Genetic modification of spike architecture is essential for improving wheat yield. Newly identified loci for the 'Miracle wheat' phenotype on chromosomes 1AS and 2BS have significant effects on spike traits. The wheat (Triticum ssp.) inflorescence, also known as a spike, forms an unbranched inflorescence in which the inflorescence meristem generates axillary spikelet meristems (SMs) destined to become sessile spikelets. Previously, we identified the putatively causative mutation in the branched headt (bht) gene (TtBH-A1) of tetraploid wheat (T. turgidum convar. compositum (L.f.) Filat.) responsible for the loss of SM identity, converting the non-branching spike to a branched wheat spike. In the current study, we performed whole-genome quantitative trait loci (QTL) analysis using 146 recombinant inbred lines (RILs) derived from a cross between spike-branching wheat ('Miracle wheat') and an elite durum wheat cultivar showing broad phenotypic variation for spike architecture. Besides the previously found gene at the bht-A1 locus on the short arm of chromosome 2A, we also mapped two new modifier QTL for spike-branching on the short arm of chromosome 1A, termed bht-A2, and 2BS. Using biparental mapping population and GWAS in 302 diverse accessions, the 2BS locus was highly associated with coding sequence variation found at the homoeo-allele of TtBH-B1 (bht-B1). Thus, RILs that combined both bht-A1 and bht-B1 alleles showed additive genetic effects leading to increased penetrance and expressivity of the supernumerary spikelet and/or mini-spike formation.


Asunto(s)
Inflorescencia/crecimiento & desarrollo , Sitios de Carácter Cuantitativo , Triticum/genética , Alelos , Mapeo Cromosómico , Cruzamientos Genéticos , Estudios de Asociación Genética , Inflorescencia/genética , Fenotipo , Tetraploidía
15.
New Phytol ; 225(5): 1873-1882, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31509613

RESUMEN

Enhancing the yield potential and stability of small-grain cereals, such as wheat (Triticum sp.), rice (Oryza sativa), and barley (Hordeum vulgare), is a priority for global food security. Over the last several decades, plant breeders have increased grain yield mainly by increasing the number of grains produced in each inflorescence. This trait is determined by the number of spikelets per spike and the number of fertile florets per spikelet. Recent genetic and genomic advances in cereal grass species have identified the molecular determinants of grain number and facilitated the exchange of information across genera. In this review, we focus on the genetic basis of inflorescence architecture in Triticeae crops, highlighting recent insights that have helped to improve grain yield by, for example, reducing the preprogrammed abortion of floral organs. The accumulating information on inflorescence development can be harnessed to enhance grain yield by comparative trait reconstruction and rational design to boost the yield potential of grain crops.


Asunto(s)
Hordeum , Oryza , Grano Comestible/genética , Inflorescencia/genética , Triticum
16.
Theor Appl Genet ; 133(9): 2759, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32696169

RESUMEN

While continuing our quest towards the identification of the labile (lab) locus in barley, we discovered that the previously assigned map location on the long arm of chromosome 5H was wrong.

17.
Theor Appl Genet ; 133(1): 239-257, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31586227

RESUMEN

Genetic control of grain yield and phenology was examined in the Excalibur/Kukri doubled haploid mapping population grown in 32 field experiments across the climatic zones of southern Australia, India and north-western Mexico where the wheat crop experiences drought and heat stress. A total of 128 QTL were identified for four traits: grain yield, thousand grain weight (TGW), days to heading and grain filling duration. These QTL included 24 QTL for yield and 27 for TGW, showing significant interactions with the environment (Q * E). We also identified 14 QTL with a significant, small main effects on yield across environments. The study focussed on a region of chromosome 1B where two main effect QTL were found for yield and TGW without the confounding effect of phenology. Excalibur was the source of favourable alleles: QYld.aww-1B.2 with a peak at 149.5-150.1 cM and QTgw.aww-1B at 168.5-171.4 cM. We developed near isogenic lines (NIL) for the interval including QYld.aww-1B.2 and QTgw.aww-1B and evaluated them under semi-controlled conditions. Significant differences in four pairs of NIL were observed for grain yield but not for TGW, confirming a positive effect of the Excalibur allele for QYld.aww-1B.2. The interval containing QYld.aww-1B.2 was narrowed down to 2.9 cM which corresponded to a 2.2 Mbp genomic region on the chromosome 1B genomic reference sequence of cv. Chinese Spring and contained 39 predicted genes.


Asunto(s)
Sequías , Ambiente , Mapeo Físico de Cromosoma , Sitios de Carácter Cuantitativo/genética , Triticum/crecimiento & desarrollo , Triticum/genética , Segregación Cromosómica/genética , Cromosomas de las Plantas/genética , Genes de Plantas , Haploidia , Fenotipo , Carácter Cuantitativo Heredable , Estaciones del Año , Semillas/crecimiento & desarrollo
18.
Nature ; 514(7520): 88-91, 2014 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-25043042

RESUMEN

Environmental constraints severely restrict crop yields in most production environments, and expanding the use of variation will underpin future progress in breeding. In semi-arid environments boron toxicity constrains productivity, and genetic improvement is the only effective strategy for addressing the problem. Wheat breeders have sought and used available genetic diversity from landraces to maintain yield in these environments; however, the identity of the genes at the major tolerance loci was unknown. Here we describe the identification of near-identical, root-specific boron transporter genes underlying the two major-effect quantitative trait loci for boron tolerance in wheat, Bo1 and Bo4 (ref. 2). We show that tolerance to a high concentration of boron is associated with multiple genomic changes including tetraploid introgression, dispersed gene duplication, and variation in gene structure and transcript level. An allelic series was identified from a panel of bread and durum wheat cultivars and landraces originating from diverse agronomic zones. Our results demonstrate that, during selection, breeders have matched functionally different boron tolerance alleles to specific environments. The characterization of boron tolerance in wheat illustrates the power of the new wheat genomic resources to define key adaptive processes that have underpinned crop improvement.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Boro/farmacología , Proteínas Portadoras/genética , Genes de Plantas/genética , Suelo/química , Triticum/efectos de los fármacos , Triticum/genética , Adaptación Fisiológica/genética , Alelos , Tolerancia a Medicamentos , Duplicación de Gen/genética , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Poliploidía , Sitios de Carácter Cuantitativo/genética , ARN Mensajero/análisis , ARN Mensajero/genética , ARN de Planta/análisis , ARN de Planta/genética , Triticum/clasificación , Triticum/fisiología
19.
Plant J ; 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29906301

RESUMEN

Flowering time is an important factor affecting grain yield in wheat. In this study, we divided reproductive spike development into eight sub-phases. These sub-phases have the potential to be delicately manipulated to increase grain yield. We measured 36 traits with regard to sub-phase durations, determined three grain yield-related traits in eight field environments and mapped 15 696 single nucleotide polymorphism (SNP, based on 90k Infinium chip and 35k Affymetrix chip) markers in 210 wheat genotypes. Phenotypic and genetic associations between grain yield traits and sub-phase durations showed significant consistency (Mantel test; r = 0.5377, P < 0.001). The shared quantitative trait loci (QTLs) revealed by the genome-wide association study suggested a close association between grain yield and sub-phase duration, which may be attributed to effects on spikelet initiation/spikelet number (double ridge to terminal spikelet stage, DR-TS) and assimilate accumulation (green anther to anthesis stage, GA-AN). Moreover, we observed that the photoperiod-sensitivity allele at the Ppd-D1 locus on chromosome 2D markedly extended all sub-phase durations, which may contribute to its positive effects on grain yield traits. The dwarfing allele at the Rht-D1 (chromosome 4D) locus altered the sub-phase duration and displayed positive effects on grain yield traits. Data for 30 selected genotypes (from among the original 210 genotypes) in the field displayed a close association with that from the greenhouse. Most importantly, this study demonstrated specific connections to grain yield in narrower time windows (i.e. the eight sub-phases), rather than the entire stem elongation phase as a whole.

20.
Mol Genet Genomics ; 294(2): 457-468, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30591960

RESUMEN

Crop yield is determined by the acquisition and allocation of photoassimilates in sink organs. Therefore, genetic modification of sink size is essential for understanding the complex signaling network regulating sink strength and source activities. Sink size in wheat depends on the number of spikelets per spike, floret/grain number per spikelet as well as the grain weight or dry matter accumulation. Hence, increasing spikelet number and improving sink size are targets for wheat breeding. The main objective of the present work was to genetically modify the wheat spike architecture, i.e., the sink size by introgressing the 'Miracle wheat' or the bht-A1 allele into an elite durum wheat cv. Floradur. After four generations of backcrossing to the recurrent parent, Floradur (FL), we have successfully developed Near Isogenic Lines (NILs) with a modified spikelet arrangement thereby increasing spikelet and grain number per spike. Genotyping of bht-A1 NILs using the Genotyping-By-Sequencing approach revealed that the size of the introgressed donor segments carrying bht-A1 ranged from 2.3 to 38 cM. The size of the shortest donor segment introgressed into bht-A1 NILs was estimated to be 9.8 mega base pairs (Mbp). Phenotypic analysis showed that FL-bht-A1-NILs (BC3F2 and BC3F3) carry up to seven additional spikelets per spike, leading to up to 29% increase in spike dry weight at harvest (SDWh). The increased SDWh was accompanied by up to 23% more grains per spike. More interestingly, thousand kernel weight (TKW) did not show significant differences between FL-bht-A1-NILs and Floradur, suggesting that besides increasing spikelet number, bht-A1 could also be targeted for increasing grain yield in wheat. Our study suggests that the genetic modification of spikelet number in wheat can be an entry point for improving grain yield, most interestingly and also unexpectedly without the trade-off effects on TKW. Hence, FL-bht-A1-NILs are not only essential for increasing grain number, but also for understanding the molecular and genetic mechanism of the source-sink interaction for a clearer picture of the complex signaling network regulating sink strength and source activities.


Asunto(s)
Grano Comestible/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética , Triticum/genética , Alelos , Mapeo Cromosómico , Grano Comestible/crecimiento & desarrollo , Edición Génica , Genotipo , Poaceae/genética , Poaceae/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Triticum/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA