Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Am J Hum Genet ; 111(6): 1206-1221, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38772379

RESUMEN

Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary ß subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.


Asunto(s)
Trastornos del Neurodesarrollo , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Epilepsia/genética , Secuenciación del Exoma , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Heterocigoto , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Linaje , Fenotipo , Canales de Potasio Shal/genética
2.
Hum Mol Genet ; 30(23): 2300-2314, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34245260

RESUMEN

Here, we report on six unrelated individuals, all presenting with early-onset global developmental delay, associated with impaired motor, speech and cognitive development, partly with developmental epileptic encephalopathy and physical dysmorphisms. All individuals carry heterozygous missense variants of KCND2, which encodes the voltage-gated potassium (Kv) channel α-subunit Kv4.2. The amino acid substitutions associated with the variants, p.(Glu323Lys) (E323K), p.(Pro403Ala) (P403A), p.(Val404Leu) (V404L) and p.(Val404Met) (V404M), affect sites known to be critical for channel gating. To unravel their likely pathogenicity, recombinant mutant channels were studied in the absence and presence of auxiliary ß-subunits under two-electrode voltage clamp in Xenopus oocytes. All channel mutants exhibited slowed and incomplete macroscopic inactivation, and the P403A variant in addition slowed activation. Co-expression of KChIP2 or DPP6 augmented the functional expression of both wild-type and mutant channels; however, the auxiliary ß-subunit-mediated gating modifications differed from wild type and among mutants. To simulate the putative setting in the affected individuals, heteromeric Kv4.2 channels (wild type + mutant) were studied as ternary complexes (containing both KChIP2 and DPP6). In the heteromeric ternary configuration, the E323K variant exhibited only marginal functional alterations compared to homomeric wild-type ternary, compatible with mild loss-of-function. By contrast, the P403A, V404L and V404M variants displayed strong gating impairment in the heteromeric ternary configuration, compatible with loss-of-function or gain-of-function. Our results support the etiological involvement of Kv4.2 channel gating impairment in early-onset monogenic global developmental delay. In addition, they suggest that gain-of-function mechanisms associated with a substitution of V404 increase epileptic seizure susceptibility.


Asunto(s)
Discapacidades del Desarrollo/etiología , Discapacidades del Desarrollo/metabolismo , Variación Genética , Activación del Canal Iónico , Canales de Potasio Shal/genética , Canales de Potasio Shal/metabolismo , Alelos , Sustitución de Aminoácidos , Biomarcadores , Discapacidades del Desarrollo/diagnóstico , Susceptibilidad a Enfermedades , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Fenotipo , Subunidades de Proteína , Canales de Potasio Shal/química
3.
Ann Neurol ; 90(5): 738-750, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34564892

RESUMEN

OBJECTIVE: Hereditary spastic paraplegia (HSP) is a highly heterogeneous neurologic disorder characterized by lower-extremity spasticity. Here, we set out to determine the genetic basis of an autosomal dominant, pure, and infantile-onset form of HSP in a cohort of 8 patients with a uniform clinical presentation. METHODS: Trio whole-exome sequencing was used in 5 index patients with infantile-onset pure HSP to determine the genetic cause of disease. The functional impact of identified genetic variants was verified using bioinformatics and complementary cellular and biochemical assays. RESULTS: Distinct heterozygous KPNA3 missense variants were found to segregate with the clinical phenotype in 8 patients; in 4 of them KPNA3 variants had occurred de novo. Mutant karyopherin-α3 proteins exhibited a variable pattern of altered expression level, subcellular distribution, and protein interaction. INTERPRETATION: Our genetic findings implicate heterozygous variants in KPNA3 as a novel cause for autosomal dominant, early-onset, and pure HSP. Mutant karyopherin-α3 proteins display varying deficits in molecular and cellular functions, thus, for the first time, implicating dysfunctional nucleocytoplasmic shuttling as a novel pathomechanism causing HSP. ANN NEUROL 2021;90:738-750.


Asunto(s)
Mutación/genética , Paraplejía Espástica Hereditaria/genética , alfa Carioferinas/genética , Adulto , Preescolar , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Secuenciación del Exoma/métodos , Adulto Joven
4.
Am J Hum Genet ; 101(5): 716-724, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100085

RESUMEN

DHX30 is a member of the family of DExH-box helicases, which use ATP hydrolysis to unwind RNA secondary structures. Here we identified six different de novo missense mutations in DHX30 in twelve unrelated individuals affected by global developmental delay (GDD), intellectual disability (ID), severe speech impairment and gait abnormalities. While four mutations are recurrent, two are unique with one affecting the codon of one recurrent mutation. All amino acid changes are located within highly conserved helicase motifs and were found to either impair ATPase activity or RNA recognition in different in vitro assays. Moreover, protein variants exhibit an increased propensity to trigger stress granule (SG) formation resulting in global translation inhibition. Thus, our findings highlight the prominent role of translation control in development and function of the central nervous system and also provide molecular insight into how DHX30 dysfunction might cause a neurodevelopmental disorder.


Asunto(s)
Discapacidades del Desarrollo/genética , Mutación Missense/genética , ARN Helicasas/genética , Adenosina Trifosfatasas/genética , Adolescente , Aminoácidos/genética , Línea Celular , Línea Celular Tumoral , Sistema Nervioso Central/patología , Niño , Preescolar , Femenino , Células HEK293 , Humanos , Discapacidad Intelectual/genética , Masculino , ARN/genética
5.
J Neurosci ; 36(35): 9124-34, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27581454

RESUMEN

UNLABELLED: Shank3 is a multidomain scaffold protein localized to the postsynaptic density of excitatory synapses. Functional studies in vivo and in vitro support the concept that Shank3 is critical for synaptic plasticity and the trans-synaptic coupling between the reliability of presynaptic neurotransmitter release and postsynaptic responsiveness. However, how Shank3 regulates synaptic strength remains unclear. The C terminus of Shank3 contains a sterile alpha motif (SAM) domain that is essential for its postsynaptic localization and also binds zinc, thus raising the possibility that changing zinc levels modulate Shank3 function in dendritic spines. In support of this hypothesis, we find that zinc is a potent regulator of Shank3 activation and dynamics in rat hippocampal neurons. Moreover, we show that zinc modulation of synaptic transmission is Shank3 dependent. Interestingly, an autism spectrum disorder (ASD)-associated variant of Shank3 (Shank3(R87C)) retains its zinc sensitivity and supports zinc-dependent activation of AMPAR-mediated synaptic transmission. However, elevated zinc was unable to rescue defects in trans-synaptic signaling caused by the R87C mutation, implying that trans-synaptic increases in neurotransmitter release are not necessary for the postsynaptic effects of zinc. Together, these data suggest that Shank3 is a key component of a zinc-sensitive signaling system, regulating synaptic strength that may be impaired in ASD. SIGNIFICANCE STATEMENT: Shank3 is a postsynaptic protein associated with neurodevelopmental disorders such as autism and schizophrenia. In this study, we show that Shank3 is a key component of a zinc-sensitive signaling system that regulates excitatory synaptic transmission. Intriguingly, an autism-associated mutation in Shank3 partially impairs this signaling system. Therefore, perturbation of zinc homeostasis may impair, not only synaptic functionality and plasticity, but also may lead to cognitive and behavioral abnormalities seen in patients with psychiatric disorders.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Transducción de Señal/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Zinc/metabolismo , Animales , Células Cultivadas , Quelantes/farmacología , Cloruros/farmacología , Espinas Dendríticas/metabolismo , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Etilenodiaminas/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Proteínas de Andamiaje Homer/metabolismo , Masculino , Mutación/genética , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Técnicas de Placa-Clamp , Fotoblanqueo , ARN Interferente Pequeño/farmacología , Ratas , Receptores AMPA/metabolismo , Transducción de Señal/genética , Sinapsis/efectos de los fármacos , Sinapsis/genética , Transmisión Sináptica/genética , Transfección , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Compuestos de Zinc/farmacología
7.
J Biol Chem ; 287(2): 1322-34, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22128154

RESUMEN

The poly(A)-binding protein (PABP), a key component of different ribonucleoprotein complexes, plays a crucial role in the control of mRNA translation rates, stability, and subcellular targeting. In this study we identify RING zinc finger protein Makorin 1 (MKRN1), a bona fide RNA-binding protein, as a binding partner of PABP that interacts with PABP in an RNA-independent manner. In rat brain, a so far uncharacterized short MKRN1 isoform, MKRN1-short, predominates and is detected in forebrain nerve cells. In neuronal dendrites, MKRN1-short co-localizes with PABP in granule-like structures, which are morphological correlates of sites of mRNA metabolism. Moreover, in primary rat neurons MKRN1-short associates with dendritically localized mRNAs. When tethered to a reporter mRNA, MKRN1-short significantly enhances reporter protein synthesis. Furthermore, after induction of synaptic plasticity via electrical stimulation of the perforant path in vivo, MKRN1-short specifically accumulates in the activated dendritic lamina, the middle molecular layer of the hippocampal dentate gyrus. Collectively, these data indicate that in mammalian neurons MKRN1-short interacts with PABP to locally control the translation of dendritic mRNAs at synapses.


Asunto(s)
Dendritas/metabolismo , Giro Dentado/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , Animales , Dendritas/genética , Giro Dentado/citología , Masculino , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/fisiología , Proteínas de Unión a Poli(A)/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Sinapsis/genética , Sinapsis/metabolismo
8.
J Neurochem ; 124(5): 670-84, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23121659

RESUMEN

Dendritic targeting of mRNAs encoding the microtubule-associated protein 2 (MAP2) in neurons involves a cis-acting dendritic targeting element. Two rat brain proteins, MAP2-RNA trans-acting protein (MARTA)1 and MARTA2, bind to the cis-element with both high affinity and specificity. In this study, affinity-purified MARTA2 was identified as orthologue of human far-upstream element binding protein 3. In neurons, it resides in somatodendritic granules and dendritic spines and associates with MAP2 mRNAs. Expression of a dominant-negative variant of MARTA2 disrupts dendritic targeting of endogenous MAP2 mRNAs, while not noticeably altering the level and subcellular distribution of polyadenylated mRNAs as a whole. Finally, MAP2 transcripts associate with the microtubule-based motor KIF5 and inhibition of KIF5, but not cytoplasmic dynein function disrupts extrasomatic trafficking of MAP2 mRNA granules. Thus, in neurons MARTA2 appears to represent a key trans-acting factor involved in KIF5-mediated dendritic targeting of MAP2 mRNAs.


Asunto(s)
Dendritas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Western Blotting , Dendritas/ultraestructura , Inmunohistoquímica , Inmunoprecipitación , Hibridación in Situ , Espectrometría de Masas , Microscopía Inmunoelectrónica , Neuronas/ultraestructura , Transporte de Proteínas/fisiología , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
J Biol Chem ; 284(37): 25431-40, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19608740

RESUMEN

Jacob is a recently identified plasticity-related protein that couples N-methyl-d-aspartate receptor activity to nuclear gene expression. An expression analysis by Northern blot and in situ hybridization shows that Jacob is almost exclusively present in brain, in particular in the cortex and the limbic system. Alternative splicing gives rise to multiple mRNA variants, all of which exhibit a prominent dendritic localization in the hippocampus. Functional analysis in primary hippocampal neurons revealed that a predominant cis-acting dendritic targeting element in the 3'-untranslated region of Jacob mRNAs is responsible for dendritic mRNA localization. In the mouse brain, Jacob transcripts are associated with both the fragile X mental retardation protein, a well described trans-acting factor regulating dendritic mRNA targeting and translation, and the kinesin family member 5C motor complex, which is known to mediate dendritic mRNA transport. Jacob is susceptible to rapid protein degradation in a Ca(2+)- and Calpain-dependent manner, and Calpain-mediated clipping of the myristoylated N terminus of Jacob is required for its nuclear translocation after N-methyl-d-aspartate receptor activation. Our data suggest that local synthesis in dendrites may be necessary to replenish dendritic Jacob pools after truncation of the N-terminal membrane anchor and concomitant translocation of Jacob to the nucleus.


Asunto(s)
Transporte Activo de Núcleo Celular , Calpaína/metabolismo , Dendritas/metabolismo , Proteínas del Tejido Nervioso/fisiología , ARN Mensajero/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Calpaína/química , Citoplasma/metabolismo , Vectores Genéticos , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Oligonucleótidos Antisentido/química , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/fisiología , Distribución Tisular , Transcripción Genética
10.
Nat Commun ; 11(1): 5797, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33199684

RESUMEN

ARGONAUTE-2 and associated miRNAs form the RNA-induced silencing complex (RISC), which targets mRNAs for translational silencing and degradation as part of the RNA interference pathway. Despite the essential nature of this process for cellular function, there is little information on the role of RISC components in human development and organ function. We identify 13 heterozygous mutations in AGO2 in 21 patients affected by disturbances in neurological development. Each of the identified single amino acid mutations result in impaired shRNA-mediated silencing. We observe either impaired RISC formation or increased binding of AGO2 to mRNA targets as mutation specific functional consequences. The latter is supported by decreased phosphorylation of a C-terminal serine cluster involved in mRNA target release, increased formation of dendritic P-bodies in neurons and global transcriptome alterations in patient-derived primary fibroblasts. Our data emphasize the importance of gene expression regulation through the dynamic AGO2-RNA association for human neuronal development.


Asunto(s)
Proteínas Argonautas/genética , Células Germinativas/metabolismo , Mutación/genética , Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/metabolismo , Interferencia de ARN , Adolescente , Animales , Proteínas Argonautas/química , Niño , Preescolar , Análisis por Conglomerados , Dendritas/metabolismo , Fibroblastos/metabolismo , Silenciador del Gen , Células HEK293 , Hipocampo/patología , Humanos , Ratones , Simulación de Dinámica Molecular , Neuronas/metabolismo , Fosforilación , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Ratas , Transcriptoma/genética
11.
Transl Psychiatry ; 9(1): 7, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30664629

RESUMEN

In humans, genetic variants of DLGAP1-4 have been linked with neuropsychiatric conditions, including autism spectrum disorder (ASD). While these findings implicate the encoded postsynaptic proteins, SAPAP1-4, in the etiology of neuropsychiatric conditions, underlying neurobiological mechanisms are unknown. To assess the contribution of SAPAP4 to these disorders, we characterized SAPAP4-deficient mice. Our study reveals that the loss of SAPAP4 triggers profound behavioural abnormalities, including cognitive deficits combined with impaired vocal communication and social interaction, phenotypes reminiscent of ASD in humans. These behavioural alterations of SAPAP4-deficient mice are associated with dramatic changes in synapse morphology, function and plasticity, indicating that SAPAP4 is critical for the development of functional neuronal networks and that mutations in the corresponding human gene, DLGAP4, may cause deficits in social and cognitive functioning relevant to ASD-like neurodevelopmental disorders.


Asunto(s)
Trastorno del Espectro Autista/genética , Disfunción Cognitiva/genética , Proteínas del Tejido Nervioso/genética , Proteínas Asociadas a SAP90-PSD95/genética , Animales , Conducta Animal , Modelos Animales de Enfermedad , Femenino , Relaciones Interpersonales , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Conducta Social , Sinapsis/metabolismo
12.
Cell Signal ; 24(3): 750-7, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22120525

RESUMEN

Inositol-1,4,5-trisphosphate 3-kinase-A (itpka) accumulates in dendritic spines and seems to be critically involved in synaptic plasticity. The protein possesses two functional activities: it phosphorylates inositol-1,4,5-trisphosphate (Ins(1,4,5)P(3)) and regulates actin dynamics by its F-actin bundling activity. To assess the relevance of these activities for neuronal physiology, we examined the effects of altered itpka levels on cell morphology, Ins(1,4,5)P(3) metabolism and dendritic Ca(2+) signaling in hippocampal neurons. Overexpression of itpka increased the number of dendritic protrusions by 71% in immature primary neurons. In mature neurons, however, the effect of itpka overexpression on formation of dendritic spines was weaker and depletion of itpka did not alter spine density and synaptic contacts. In synaptosomes of mature neurons itpka loss resulted in decreased duration of Ins(1,4,5)P(3) signals and shorter Ins(1,4,5)P(3)-dependent Ca(2+) transients. At synapses of itpka deficient neurons the levels of Ins(1,4,5)P(3)-5-phosphatase (inpp5a) and sarcoplasmic/endoplasmic reticulum calcium ATPase pump-2b (serca2b) were increased, indicating that decreased duration of Ins(1,4,5)P(3) and Ca(2+) signals results from compensatory up-regulation of these proteins. Taken together, our data suggest a dual role for itpka. In developing neurons itpka has a morphogenic effect on dendrites, while the kinase appears to play a key role in shaping Ca(2+) transients at mature synapses.


Asunto(s)
Calcio/metabolismo , Neuronas/citología , Neuronas/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Señalización del Calcio , Células Cultivadas , Cerebelo/metabolismo , Espinas Dendríticas/enzimología , Hipocampo/enzimología , Hipocampo/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Inositol Polifosfato 5-Fosfatasas , Ratones , Ratones Noqueados , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Ratas , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Sinaptosomas/metabolismo , Transfección
13.
Sci Rep ; 2: 484, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22761992

RESUMEN

In mammalian neurons, targeting and translation of specific mRNAs in dendrites contribute to synaptic plasticity. After nuclear export, mRNAs designated for dendritic transport are generally assumed to be translationally dormant and activity of individual synapses may locally trigger their extrasomatic translation. We show that the long, GC-rich 5'-untranslated region of dendritic SAPAP3 mRNA restricts translation initiation via a mechanism that involves an upstream open reading frame (uORF). In addition, the uORF enables the use of an alternative translation start site, permitting synthesis of two SAPAP3 isoforms from a single mRNA. While both isoforms progressively accumulate at postsynaptic densities during early rat brain development, their levels relative to each other vary in different adult rat brain areas. Thus, alternative translation initiation events appear to regulate relative expression of distinct SAPAP3 isoforms in different brain regions, which may function to influence synaptic plasticity.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Iniciación de la Cadena Peptídica Traduccional , Regiones no Traducidas 5' , Animales , Secuencia de Bases , Encéfalo/metabolismo , Línea Celular Tumoral , Codón Iniciador , Regulación de la Expresión Génica , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/biosíntesis , Plasticidad Neuronal/genética , Sistemas de Lectura Abierta , Biosíntesis de Proteínas , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Isoformas de ARN , Ratas , Roedores/genética , Alineación de Secuencia
14.
Ophthalmic Genet ; 30(2): 96-8, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19373681

RESUMEN

Mutations in TOPORS cause autosomal dominant retinitis pigmentosa (adRP). Examination of 160 adRP patients from continental Europe revealed nine exonic single nucleotide variants, eight of which reside in the coding region; three synonymous single nucleotide polymorphisms (SNPs; c.2319T > C, c.2991T > C and c.1560A > G), three nonsynonymous SNPs (c.58C > T/p.P20S, c.74C >G/p.S25W and c.1730C > A/p.S577Y) and two novel missense mutations (c.1205A > C/p.Q402P and c.1818T > G/p.S606R). Whether the latter two variants represent adRP causing mutations awaits further analysis.


Asunto(s)
Mutación , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Retinitis Pigmentosa/genética , Ubiquitina-Proteína Ligasas/genética , Europa (Continente) , Genes Dominantes , Humanos , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Polimorfismo Conformacional Retorcido-Simple , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA