Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Eur J Neurosci ; 59(2): 308-315, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38086536

RESUMEN

Multiple system atrophy (MSA) is a rare and rapidly progressive atypical parkinsonian disorder characterized by oligodendroglial cytoplasmic inclusions containing α-synuclein (α-syn), demyelination, inflammation and neuronal loss. To date, no disease-modifying therapy is available. Targeting α-syn-driven oligodendroglial dysfunction and demyelination presents a potential therapeutic approach for restricting axonal dysfunction, neuronal loss and disease progression. The present study investigated the promyelinogenic potential of sobetirome, a blood-brain barrier permeable and central nervous system selective thyromimetic in the context of an in vitro MSA model. Oligodendrocyte precursor cells (OPCs) were obtained from transgenic mice overexpressing human α-syn specifically in oligodendrocytes (MBP29 mouse line), a well-described MSA model, and non-transgenic littermates. mRNA and protein expression analyses revealed a substantial rescue effect of sobetirome on myelin-specific proteins in control and α-syn overexpressing oligodendrocytes. Furthermore, myelination analysis using nanofibres confirmed that sobetirome increases both the length and number of myelinated segments per oligodendrocyte in primary murine α-syn overexpressing oligodendrocytes and their respective control. These results suggest that sobetirome may be a promising thyromimetic compound targeting an important neuropathological hallmark of MSA.


Asunto(s)
Enfermedades Desmielinizantes , Atrofia de Múltiples Sistemas , Fenoles , Ratones , Humanos , Animales , Atrofia de Múltiples Sistemas/tratamiento farmacológico , Atrofia de Múltiples Sistemas/genética , Atrofia de Múltiples Sistemas/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Acetatos/metabolismo , Ratones Transgénicos , Oligodendroglía/metabolismo , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad
2.
Small ; 20(10): e2305467, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37875633

RESUMEN

Clean water is one of the most important resources of the planet but human-made contamination with diverse pollutants increases continuously. Microplastics (<5 mm diameter) which can have severe impacts on the environment, are present worldwide. Degradation processes lead to nanoplastics (<1 µm), which are potentially even more dangerous due to their increased bioavailability. State-of-the-art wastewater treatment plants show a deficit in effectively eliminating micro- and nanoplastics (MNP) from water, particularly in the case of nanoplastics. In this work, the magnetic removal of three different MNP types across three orders of magnitude in size (100 nm-100 µm) is investigated systematically. Superparamagnetic iron oxide nanoparticles (SPIONs) tend to attract oppositely charged MNPs and form aggregates that can be easily collected by a magnet. It shows that especially the smallest fractions (100-300 nm) can be separated in ordinary high numbers (1013  mg-1 SPION) while the highest mass is removed for MNP between 2.5 and 5 µm. The universal trend for all three types of MNP can be fitted with a derived model, which can make predictions for optimizing SPIONs for specific size ranges in the future.

3.
Acta Neuropathol ; 147(1): 80, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714540

RESUMEN

GABAergic interneurons play a critical role in maintaining neural circuit balance, excitation-inhibition regulation, and cognitive function modulation. In tuberous sclerosis complex (TSC), GABAergic neuron dysfunction contributes to disrupted network activity and associated neurological symptoms, assumingly in a cell type-specific manner. This GABAergic centric study focuses on identifying specific interneuron subpopulations within TSC, emphasizing the unique characteristics of medial ganglionic eminence (MGE)- and caudal ganglionic eminence (CGE)-derived interneurons. Using single-nuclei RNA sequencing in TSC patient material, we identify somatostatin-expressing (SST+) interneurons as a unique and immature subpopulation in TSC. The disrupted maturation of SST+ interneurons may undergo an incomplete switch from excitatory to inhibitory GABAergic signaling during development, resulting in reduced inhibitory properties. Notably, this study reveals markers of immaturity specifically in SST+ interneurons, including an abnormal NKCC1/KCC2 ratio, indicating an imbalance in chloride homeostasis crucial for the postsynaptic consequences of GABAergic signaling as well as the downregulation of GABAA receptor subunits, GABRA1, and upregulation of GABRA2. Further exploration of SST+ interneurons revealed altered localization patterns of SST+ interneurons in TSC brain tissue, concentrated in deeper cortical layers, possibly linked to cortical dyslamination. In the epilepsy context, our research underscores the diverse cell type-specific roles of GABAergic interneurons in shaping seizures, advocating for precise therapeutic considerations. Moreover, this study illuminates the potential contribution of SST+ interneurons to TSC pathophysiology, offering insights for targeted therapeutic interventions.


Asunto(s)
Neuronas GABAérgicas , Interneuronas , Esclerosis Tuberosa , Interneuronas/patología , Interneuronas/metabolismo , Esclerosis Tuberosa/patología , Esclerosis Tuberosa/metabolismo , Humanos , Neuronas GABAérgicas/patología , Neuronas GABAérgicas/metabolismo , Masculino , Femenino , Eminencia Media/patología , Eminencia Media/metabolismo , Somatostatina/metabolismo , Niño , Preescolar , Receptores de GABA-A/metabolismo , Adolescente , Eminencia Ganglionar
4.
Biomacromolecules ; 25(4): 2323-2337, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38437165

RESUMEN

Genipin-cross-linked silk fibroin (SF) hydrogel is considered to be biocompatible and mechanically robust. However, its use remains a challenge for in situ forming applications due to its prolonged gelation process. In our attempt to facilitate the in situ fabrication of a genipin-mediated SF hydrogel, alginate dialdehyde (ADA) was utilized as a reinforcement template. Here, SF/ADA-based hydrogels with different compositions were synthesized covalently and ionically. Incorporating ADA into the SF hydrogel increased pore size (44.66-174.66 µm), porosity (61.59-80.40%), and the equilibrium swelling degree (7.60-30.17). Moreover, a wide range of storage modulus and compressive modulus were obtained by adjusting the proportions of SF and ADA networks within the hydrogel. The in vitro cell analysis using preosteoblast cells (MC3T3-E1) demonstrated the cytocompatibility of all hydrogels. Overall, the covalently and ionically cross-linked SF/ADA hydrogel represents a promising solution for in situ forming hydrogels for applications in tissue regeneration.


Asunto(s)
Fibroínas , Hidrogeles , Alginatos , Iridoides , Seda , Ingeniería de Tejidos
5.
Brain ; 146(12): 5153-5167, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37467479

RESUMEN

Dravet syndrome is a severe epileptic encephalopathy, characterized by (febrile) seizures, behavioural problems and developmental delay. Eighty per cent of patients with Dravet syndrome have a mutation in SCN1A, encoding Nav1.1. Milder clinical phenotypes, such as GEFS+ (generalized epilepsy with febrile seizures plus), can also arise from SCN1A mutations. Predicting the clinical phenotypic outcome based on the type of mutation remains challenging, even when the same mutation is inherited within one family. This clinical and genetic heterogeneity adds to the difficulties of predicting disease progression and tailoring the prescription of anti-seizure medication. Understanding the neuropathology of different SCN1A mutations may help to predict the expected clinical phenotypes and inform the selection of best-fit treatments. Initially, the loss of Na+-current in inhibitory neurons was recognized specifically to result in disinhibition and consequently seizure generation. However, the extent to which excitatory neurons contribute to the pathophysiology is currently debated and might depend on the patient clinical phenotype or the specific SCN1A mutation. To examine the genotype-phenotype correlations of SCN1A mutations in relation to excitatory neurons, we investigated a panel of patient-derived excitatory neuronal networks differentiated on multi-electrode arrays. We included patients with different clinical phenotypes, harbouring various SCN1A mutations, along with a family in which the same mutation led to febrile seizures, GEFS+ or Dravet syndrome. We hitherto describe a previously unidentified functional excitatory neuronal network phenotype in the context of epilepsy, which corresponds to seizurogenic network prediction patterns elicited by proconvulsive compounds. We found that excitatory neuronal networks were affected differently, depending on the type of SCN1A mutation, but did not segregate according to clinical severity. Specifically, loss-of-function mutations could be distinguished from missense mutations, and mutations in the pore domain could be distinguished from mutations in the voltage sensing domain. Furthermore, all patients showed aggravated neuronal network responses at febrile temperatures compared with controls. Finally, retrospective drug screening revealed that anti-seizure medication affected GEFS+ patient- but not Dravet patient-derived neuronal networks in a patient-specific and clinically relevant manner. In conclusion, our results indicate a mutation-specific excitatory neuronal network phenotype, which recapitulates the foremost clinically relevant features, providing future opportunities for precision therapies.


Asunto(s)
Epilepsias Mioclónicas , Epilepsia Generalizada , Convulsiones Febriles , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Estudios Retrospectivos , Mutación/genética , Epilepsia Generalizada/genética , Fenotipo , Convulsiones Febriles/genética , Convulsiones Febriles/diagnóstico , Neuronas
6.
Mol Psychiatry ; 27(1): 1-18, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33972691

RESUMEN

Activity in the healthy brain relies on a concerted interplay of excitation (E) and inhibition (I) via balanced synaptic communication between glutamatergic and GABAergic neurons. A growing number of studies imply that disruption of this E/I balance is a commonality in many brain disorders; however, obtaining mechanistic insight into these disruptions, with translational value for the patient, has typically been hampered by methodological limitations. Cadherin-13 (CDH13) has been associated with autism and attention-deficit/hyperactivity disorder. CDH13 localizes at inhibitory presynapses, specifically of parvalbumin (PV) and somatostatin (SST) expressing GABAergic neurons. However, the mechanism by which CDH13 regulates the function of inhibitory synapses in human neurons remains unknown. Starting from human-induced pluripotent stem cells, we established a robust method to generate a homogenous population of SST and MEF2C (PV-precursor marker protein) expressing GABAergic neurons (iGABA) in vitro, and co-cultured these with glutamatergic neurons at defined E/I ratios on micro-electrode arrays. We identified functional network parameters that are most reliably affected by GABAergic modulation as such, and through alterations of E/I balance by reduced expression of CDH13 in iGABAs. We found that CDH13 deficiency in iGABAs decreased E/I balance by means of increased inhibition. Moreover, CDH13 interacts with Integrin-ß1 and Integrin-ß3, which play opposite roles in the regulation of inhibitory synaptic strength via this interaction. Taken together, this model allows for standardized investigation of the E/I balance in a human neuronal background and can be deployed to dissect the cell-type-specific contribution of disease genes to the E/I balance.


Asunto(s)
Cadherinas , Neuronas GABAérgicas , Parvalbúminas , Cadherinas/metabolismo , Neuronas GABAérgicas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas , Integrinas/metabolismo , Parvalbúminas/metabolismo , Sinapsis/metabolismo
7.
Epilepsia ; 64(8): 1975-1990, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37195166

RESUMEN

Epilepsy is one of the most common neurological disorders. Although many factors contribute to epileptogenesis, seizure generation is mostly linked to hyperexcitability due to alterations in excitatory/inhibitory (E/I) balance. The common hypothesis is that reduced inhibition, increased excitation, or both contribute to the etiology of epilepsy. Increasing evidence shows that this view is oversimplistic, and that increased inhibition through depolarizing γ-aminobutyric acid (GABA) similarly contributes to epileptogenisis. In early development, GABA signaling is depolarizing, inducing outward Cl- currents due to high intracellular Cl- concentrations. During maturation, the mechanisms of GABA action shift from depolarizing to hyperpolarizing, a critical event during brain development. Altered timing of this shift is associated with both neurodevelopmental disorders and epilepsy. Here, we consider the different ways that depolarizing GABA contributes to altered E/I balance and epileptogenesis, and discuss that alterations in depolarizing GABA could be a common denominator underlying seizure generation in neurodevelopmental disorders and epilepsies.


Asunto(s)
Epilepsia , Trastornos del Neurodesarrollo , Humanos , Ácido gamma-Aminobutírico/fisiología , Epilepsia/etiología , Convulsiones/complicaciones , Trastornos del Neurodesarrollo/complicaciones
8.
J Artif Organs ; 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37099051

RESUMEN

Patient-tailored silicone plug for HeartMate 3™ left ventricular assist device explantation in two successive males proceeded successfully. Given medical therapeutic advancements, FDA-approved plug systems designed by LVAD manufacturers themselves will be necessary for the near future to provide a safe and simple device explantation alternative that fulfills all regulatory standards.

9.
Neurobiol Dis ; 163: 105587, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34923109

RESUMEN

Monoamine neurotransmitter abundance affects motor control, emotion, and cognitive function and is regulated by monoamine oxidases. Among these, Monoamine oxidase A (MAOA) catalyzes the degradation of dopamine, norepinephrine, and serotonin into their inactive metabolites. Loss-of-function mutations in the X-linked MAOA gene have been associated with Brunner syndrome, which is characterized by various forms of impulsivity, maladaptive externalizing behavior, and mild intellectual disability. Impaired MAOA activity in individuals with Brunner syndrome results in bioamine aberration, but it is currently unknown how this affects neuronal function, specifically in dopaminergic (DA) neurons. Here we generated human induced pluripotent stem cell (hiPSC)-derived DA neurons from three individuals with Brunner syndrome carrying different mutations and characterized neuronal properties at the single cell and neuronal network level in vitro. DA neurons of Brunner syndrome patients showed reduced synaptic density but exhibited hyperactive network activity. Intrinsic functional properties and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission were not affected in DA neurons of individuals with Brunner syndrome. Instead, we show that the neuronal network hyperactivity is mediated by upregulation of the GRIN2A and GRIN2B subunits of the N-methyl-d-aspartate receptor (NMDAR), resulting in increased NMDAR-mediated currents. By correcting a MAOA missense mutation with CRISPR/Cas9 genome editing we normalized GRIN2A and GRIN2B expression, NMDAR function and neuronal population activity to control levels. Our data suggest that MAOA mutations in Brunner syndrome increase the activity of dopaminergic neurons through upregulation of NMDAR function, which may contribute to the etiology of Brunner syndrome associated phenotypes.


Asunto(s)
Trastornos Disruptivos, del Control de Impulso y de la Conducta/genética , Neuronas Dopaminérgicas/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Discapacidad Intelectual/genética , Monoaminooxidasa/deficiencia , Monoaminooxidasa/genética , Mutación , Polimorfismo de Nucleótido Simple , Receptores de N-Metil-D-Aspartato/metabolismo , Agresión , Trastornos Disruptivos, del Control de Impulso y de la Conducta/metabolismo , Trastornos Disruptivos, del Control de Impulso y de la Conducta/fisiopatología , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Humanos , Células Madre Pluripotentes Inducidas , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/fisiopatología , Masculino , Monoaminooxidasa/metabolismo , Red Nerviosa/metabolismo , Red Nerviosa/fisiopatología , Sinapsis/metabolismo , Transmisión Sináptica/genética
10.
Mol Psychiatry ; 26(6): 2013-2024, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32346159

RESUMEN

Defects in histone methyltransferases (HMTs) are major contributing factors in neurodevelopmental disorders (NDDs). Heterozygous variants of SETD1A involved in histone H3 lysine 4 (H3K4) methylation were previously identified in individuals with schizophrenia. Here, we define the clinical features of the Mendelian syndrome associated with haploinsufficiency of SETD1A by investigating 15 predominantly pediatric individuals who all have de novo SETD1A variants. These individuals present with a core set of symptoms comprising global developmental delay and/or intellectual disability, subtle facial dysmorphisms, behavioral and psychiatric problems. We examined cellular phenotypes in three patient-derived lymphoblastoid cell lines with three variants: p.Gly535Alafs*12, c.4582-2_4582delAG, and p.Tyr1499Asp. These patient cell lines displayed DNA damage repair defects that were comparable to previously observed RNAi-mediated depletion of SETD1A. This suggested that these variants, including the p.Tyr1499Asp in the catalytic SET domain, behave as loss-of-function (LoF) alleles. Previous studies demonstrated a role for SETD1A in cell cycle control and differentiation. However, individuals with SETD1A variants do not show major structural brain defects or severe microcephaly, suggesting that defective proliferation and differentiation of neural progenitors is unlikely the single underlying cause of the disorder. We show here that the Drosophila melanogaster SETD1A orthologue is required in postmitotic neurons of the fly brain for normal memory, suggesting a role in post development neuronal function. Together, this study defines a neurodevelopmental disorder caused by dominant de novo LoF variants in SETD1A and further supports a role for H3K4 methyltransferases in the regulation of neuronal processes underlying normal cognitive functioning.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Animales , Niño , Drosophila , Drosophila melanogaster , Haploinsuficiencia/genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética
11.
Macromol Rapid Commun ; 43(17): e2200177, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35355354

RESUMEN

For decades, crude oil spills and oil wastewater have become the most problematic environmental pollution and damage to public health. Therefore, it is considerable to develop superhydrophobic polymer foam for separating oil from water with high selectivity and sorption capacity. Here, a new type of environmentally friendly pure polypropylene (PP) foam with superhydrophobicity is first time proposed with a particular coexistence of microspheres and microporous structure fabricated via an advanced solvent-evaporation method. The PP foam exhibits exceptional superhydrophobic with a water contact angle of 151° and the maximum saturated adsorption capacity of 26 g g-1 . After more than 15 h of cyclic continuous oil-water pumping experiment, it still maintains a high oil absorption efficiency of 98%, providing the basis for practical commercial applications. More importantly, the variation of hydrophobic properties is described by Flory-Huggins polymer solution theory and Huggins interaction parameters, and the optimal solution ratio range is predicted which provides a relevant theoretical basis for actual industrial production.


Asunto(s)
Contaminación por Petróleo , Polipropilenos , Microesferas , Contaminación por Petróleo/análisis , Polipropilenos/química , Solventes , Agua/química
12.
Cell Mol Life Sci ; 78(6): 2517-2563, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33263776

RESUMEN

Neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorders (ASD), are a large group of disorders in which early insults during brain development result in a wide and heterogeneous spectrum of clinical diagnoses. Mutations in genes coding for chromatin remodelers are overrepresented in NDD cohorts, pointing towards epigenetics as a convergent pathogenic pathway between these disorders. In this review we detail the role of NDD-associated chromatin remodelers during the developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation. We discuss how defects in chromatin remodelling during these early developmental time points compound over time and result in impaired brain circuit establishment. In particular, we focus on their role in the three largest cell populations: glutamatergic neurons, GABAergic neurons, and glia cells. An in-depth understanding of the spatiotemporal role of chromatin remodelers during neurodevelopment can contribute to the identification of molecular targets for treatment strategies.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Trastornos del Neurodesarrollo/patología , Animales , Cromatina/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , Epigénesis Genética , Histonas/genética , Histonas/metabolismo , Humanos , Trastornos del Neurodesarrollo/metabolismo , Neuronas/metabolismo , Procesamiento Proteico-Postraduccional/genética
13.
Proc Natl Acad Sci U S A ; 116(14): 7077-7082, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30877244

RESUMEN

Extensive evidence indicates that the basolateral amygdala (BLA) interacts with other brain regions in mediating stress hormone and emotional arousal effects on memory consolidation. Brain activation studies have shown that arousing conditions lead to the activation of large-scale neural networks and several functional connections between brain regions beyond the BLA. Whether such distal interactions on memory consolidation also depend on BLA activity is not as yet known. We investigated, in male Sprague-Dawley rats, whether BLA activity enables prelimbic cortex (PrL) interactions with the anterior insular cortex (aIC) and dorsal hippocampus (dHPC) in regulating glucocorticoid effects on different components of object recognition memory. The glucocorticoid receptor (GR) agonist RU 28362 administered into the PrL, but not infralimbic cortex, immediately after object recognition training enhanced 24-hour memory of both the identity and location of the object via functional interactions with the aIC and dHPC, respectively. Importantly, posttraining inactivation of the BLA by the noradrenergic antagonist propranolol abolished the effect of GR agonist administration into the PrL on memory enhancement of both the identity and location of the object. BLA inactivation by propranolol also blocked the effect of GR agonist administration into the PrL on inducing changes in neuronal activity within the aIC and dHPC during the postlearning consolidation period as well as on structural changes in spine morphology assessed 24 hours later. These findings provide evidence that BLA noradrenergic activity enables functional interactions between the PrL and the aIC and dHPC in regulating stress hormone and emotional arousal effects on memory.


Asunto(s)
Androstanoles/farmacología , Complejo Nuclear Basolateral/metabolismo , Corteza Cerebral/metabolismo , Glucocorticoides/metabolismo , Memoria/efectos de los fármacos , Red Nerviosa/metabolismo , Receptores de Glucocorticoides/agonistas , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Glucocorticoides/metabolismo
14.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35955588

RESUMEN

Highly oriented electrospun conductive nanofibrous biocomposites (CNBs) of polylactic acid (PLA) and polyaniline (PANi) are fabricated using electrospinning. At the percolation threshold (φc), the growth of continuous paths between PANi particles leads to a steep increase in the electrical conductivity of fibers, and the McLachlan equation is fitted to identify φc. Annealing generates additional conductive channels, which lead to higher conductivity for dynamic percolation. For the first time, dynamic percolation is investigated for revealing time-temperature superposition in oriented conductive nanofibrous biocomposites. The crystallinity (χc) displays a linear dependence on annealing temperature within the confined fiber of CNBs. The increase in crystallinity due to annealing also increases the Young's modulus E of CNBs. The present study outlines a reliable approach to determining the conductivity and elasticity of nanofibers that are highly desirable for a wide range of biological tissue applications.


Asunto(s)
Nanofibras , Ingeniería de Tejidos , Elasticidad , Conductividad Eléctrica , Poliésteres/farmacología , Andamios del Tejido
15.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35269908

RESUMEN

Due to its ability to reduce scarring and inflammation, human amniotic membrane is a widely used graft for wound dressings after corneal surgery. To overcome donor dependency and biological variances in the donor tissue, artificial nanofibrous grafts acting as drug carrier systems are promising substitutes. Electrospun nanofibrous scaffolds seem to be an appropriate approach as they offer the properties of permeable scaffolds with a high specific surface, the latter one depending on the fiber diameter. Electrospun scaffolds with fiber diameter of 35 nm, 113 nm, 167 nm and 549 nm were manufactured and coated by the layer-by-layer (LbL) technology with either hyaluronic acid or heparin for enhanced regeneration of corneal tissue after surgery. Studies on drug loading capacity and release kinetics defined a lower limit for nanofibrous scaffolds for effective drug loading. Additionally, scaffold characteristics and resulting mechanical properties from the application-oriented characterization of suture pullout from suture retention tests were examined. Finally, scaffolds consisting of nanofibers with a mean fiber diameter of 113 nm were identified as the best-performing scaffolds, concerning drug loading efficiency and resistance against suture pullout.


Asunto(s)
Ácido Hialurónico , Nanofibras , Vendajes , Portadores de Fármacos , Heparina/farmacología , Humanos , Ácido Hialurónico/farmacología , Nanofibras/uso terapéutico , Poliésteres , Ingeniería de Tejidos , Andamios del Tejido
16.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35563143

RESUMEN

The use of organic-inorganic 3D printed composites with enhanced properties in biomedical applications continues to increase. The present study focuses on the development of 3D printed alginate-based composites incorporating inorganic fillers with different shapes (angular and round), for bone regeneration. Reactive fillers (bioactive glass 13-93 and hydroxyapatite) and non-reactive fillers (inert soda-lime glass) were investigated. Rheological studies and the characterization of various extrusion-based parameters, including material throughput, printability, shape fidelity and filament fusion, were carried out to identify the parameters dominating the printing process. It was shown that the effective surface area of the filler particle has the highest impact on the printing behavior, while the filler reactivity presents a side aspect. Composites with angular particle morphologies showed the same high resolution during the printing process, almost independent from their reactivity, while composites with comparable amounts of round filler particles lacked stackability after printing. Further, it could be shown that a higher effective surface area of the particles can circumvent the need for a higher filler content for obtaining convincing printing results. In addition, it was proven that, by changing the particle shape, the critical filler content for the obtained adequate printability can be altered. Preliminary in vitro biocompatibility investigations were carried out with the bioactive glass containing ink. The 3D printed ink, forming an interconnected porous scaffold, was analyzed regarding its biocompatibility in direct or indirect contact with the pre-osteoblast cell line MC3T3-E1. Both kinds of cell tests showed increased viability and a high rate of proliferation, with complete coverage of the 3D scaffolds' surface already after 7 d post cell-seeding.


Asunto(s)
Alginatos , Bioimpresión , Bioimpresión/métodos , Regeneración Ósea , Hidrogeles , Impresión Tridimensional , Andamios del Tejido
17.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34638631

RESUMEN

The present study outlines a reliable approach to determining the electrical conductivity and elasticity of highly oriented electrospun conductive nanofibers of biopolymers. The highly oriented conductive fibers are fabricated by blending a high molar mass polyethylene oxide (PEO), polycaprolactone (PCL), and polylactic acid (PLA) with polyaniline (PANi) filler. The filler-matrix interaction and molar mass (M) of host polymer are among governing factors for variable fiber diameter. The conductivity as a function of filler fraction (φ) is shown and described using a McLachlan equation to reveal the electrical percolation thresholds (φc) of the nanofibers. The molar mass of biopolymer, storage time, and annealing temperature are significant factors for φc. The Young's modulus (E) of conductive fibers is dependent on filler fraction, molar mass, and post-annealing process. The combination of high orientation, tunable diameter, tunable conductivity, tunable elasticity, and biodegradability makes the presented nanofibers superior to the fibers described in previous literature and highly desirable for various biomedical and technical applications.


Asunto(s)
Biopolímeros/química , Nanofibras/química , Polímeros/química , Compuestos de Anilina/química , Módulo de Elasticidad/fisiología , Conductividad Eléctrica , Electricidad , Poliésteres/química , Polietilenglicoles/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
18.
Biophys J ; 118(3): 657-666, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31952805

RESUMEN

We describe a technique for simultaneous quantification of the contractile forces and cytosolic calcium dynamics of muscle fibers embedded in three-dimensional biopolymer gels under auxotonic loading conditions. We derive a scaling law for linear elastic matrices such as basement membrane extract hydrogels (Matrigel) that allows us to measure contractile force from the shape of the relaxed and contracted muscle cell and the Young's modulus of the matrix without further knowledge of the matrix deformations surrounding the cell and without performing computationally intensive inverse force reconstruction algorithms. We apply our method to isolated mouse flexor digitorum brevis (FDB) fibers that are embedded in 10 mg/mL Matrigel. Upon electrical stimulation, individual FDB fibers show twitch forces of 0.37 ± 0.15 µN and tetanic forces (100-Hz stimulation frequency) of 2.38 ± 0.71 µN, corresponding to a tension of 0.44 ± 0.25 kPa and 2.53 ± 1.17 kPa, respectively. Contractile forces of FDB fibers increase in response to caffeine and the troponin-calcium stabilizer tirasemtiv, similar to responses measured in whole muscle. From simultaneous high-speed measurements of cell length changes and cytosolic calcium concentration using confocal line scanning at a frequency of 2048 Hz, we show that twitch and tetanic force responses to electric pulses follow the low-pass filtered calcium signal. In summary, we present a technically simple high-speed method for measuring contractile forces and cytosolic calcium dynamics of single muscle fibers. We expect that our method will help to reduce preparation time, costs, and the number of sacrificed animals needed for experiments such as drug testing.


Asunto(s)
Microscopía , Tracción , Animales , Calcio , Estimulación Eléctrica , Ratones , Contracción Muscular , Fibras Musculares Esqueléticas , Músculo Esquelético
19.
J Mater Sci Mater Med ; 31(3): 31, 2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152812

RESUMEN

Alginate dialdehyde-gelatin (ADA-GEL) hydrogels have been reported to be suitable matrices for cell encapsulation. In general, application of ADA-GEL as bioink has been limited to planar structures due to its low viscosity. In this work, ring shaped constructs of ADA-GEL hydrogel were fabricated by casting the hydrogel into sacrificial molds which were 3D printed from 9% methylcellulose and 5% gelatin. Dissolution of the supporting structure was observed during the 1st week of sample incubation. In addition, the effect of different crosslinkers (Ba2+ and Ca2+) on the physicochemical properties of ADA-GEL and on the behavior of encapsulated MG-63 cells was investigated. It was found that Ba2+ crosslinked network had more than twice higher storage modulus, and mass decrease to 70% during incubation compared to 42% in case of hydrogels crosslinked with Ca2+. In addition, faster increase in cell viability during incubation and earlier cell network formation were observed after Ba2+ crosslinking. No negative effects on cell activity due to the use of sacrificial materials were observed. The approach presented here could be further developed for cell-laden ADA-GEL bioink printing into complex 3D structures.


Asunto(s)
Aldehídos/química , Alginatos/química , Gelatina/química , Hidrogeles/química , Impresión Tridimensional , Bario/química , Bioimpresión , Calcio/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Reactivos de Enlaces Cruzados/química , Humanos , Ingeniería de Tejidos , Andamios del Tejido/química , Viscosidad
20.
J Mater Sci Mater Med ; 31(2): 23, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32016560

RESUMEN

Capsular contracture remains a challenge in plastic surgery and represents one of the most common postoperative complications following alloplastic breast reconstruction. The impact of the surface structure of silicone implants on the foreign body reaction and the behaviour of connective tissue-producing cells has already been discussed. The aim of this study was to investigate different pore sizes of silicone surfaces and their influence on human fibroblasts in an in vitro model. Four different textures (no, fine, medium and coarse texture) produced with the salt-loss technique, have been assessed in an in vitro model. Human fibroblasts were seeded onto silicone sheets and evaluated after 1, 4 and 7 days microscopically, with viability assay and gene expression analysis. Comparing the growth behaviour and adhesion of the fibroblasts on the four different textures, a dense cell layer, good adhesion and bridge-building ability of the cells could be observed for the fine and medium texture. Cell number and viability of the cells were increasing during the time course of experiments on every texture. TGFß1 was lowest expressed on the fine and medium texture indicating a trend for decreased fibrotic activity. For silicone surfaces produced with the salt-loss technique, we were able to show an antifibrotic effect of smaller sized pores. These findings underline the hypothesis of a key role of the implant surface and the pore size and pore structure in preventing capsular contracture.


Asunto(s)
Materiales Biocompatibles , Fibroblastos/fisiología , Ensayo de Materiales , Siliconas/química , Propiedades de Superficie , Técnicas de Cultivo de Célula , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA