Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Infect Immun ; 91(12): e0024723, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37991349

RESUMEN

There are currently no approved vaccines against the opportunistic pathogen Pseudomonas aeruginosa. Among vaccine targets, the lipopolysaccharide (LPS) O antigen of P. aeruginosa is the most immunodominant protective candidate. There are 20 different O antigens composed of different repeat sugar structures conferring serogroup specificity, and 10 are found most frequently in infection. Thus, one approach to combat infection by P. aeruginosa could be to generate immunity with a vaccine cocktail that includes all these serogroups. Serogroup O9 is 1 of the 10 serogroups commonly found in infection, but it has never been developed into a vaccine, due in part to the acid-labile nature of the O9 polysaccharide. Our laboratory has previously shown that intranasal administration of an attenuated Salmonella strain expressing the P. aeruginosa serogroup O11 LPS O antigen was effective in clearing bacteria and preventing mortality in mice following intranasal challenge with serogroup O11 P. aeruginosa. Consequently, we set out to develop a P. aeruginosa serogroup O9 vaccine using a similar approach. Here, we show that Salmonella expressing serogroup O9 triggered an antibody-mediated immune response following intranasal administration to mice and that it conferred protection from P. aeruginosa serogroup O9 in a murine model of acute pneumonia.


Asunto(s)
Antígenos O , Infecciones por Pseudomonas , Ratones , Animales , Lipopolisacáridos , Pseudomonas aeruginosa , Serogrupo , Vacunas Bacterianas , Anticuerpos Antibacterianos
2.
bioRxiv ; 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37502855

RESUMEN

There are currently no approved vaccines against the opportunistic pathogen Pseudomonas aeruginosa. Among vaccine targets, the lipopolysaccharide (LPS) O antigen of P. aeruginosa is the most immunodominant protective candidate. There are twenty different O antigens composed of different repeat sugars structures conferring serogroup specificity, and ten are found most frequently in infection. Thus, one approach to combat infection by P. aeruginosa could be to generate immunity with a vaccine cocktail that includes all these serogroups. Serogroup O9 is one of the ten serogroups commonly found in infection, but it has never been developed into a vaccine, likely due, in part, to the acid labile nature of the O9 polysaccharide. Our laboratory has previously shown that intranasal administration of an attenuated Salmonella strain expressing the P. aeruginosa serogroup O11 LPS O antigen was effective in clearing and preventing mortality in mice following intranasal challenge with serogroup O11 P. aeruginosa. Consequently, we set out to develop a P. aeruginosa serogroup O9 vaccine using a similar approach. Here we show that Salmonella expressing serogroup O9 triggered an antibody-mediated immune response following intranasal administration to mice and that it conferred protection from P. aeruginosa serogroup O9 in a murine model of acute pneumonia.

3.
J Clin Microbiol ; 49(5): 1750-7, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21411576

RESUMEN

The polysaccharide capsule (CPS) of Campylobacter jejuni is the major serodeterminant of the Penner serotyping scheme. There are 47 Penner serotypes of C. jejuni, 22 of which fall into complexes of related serotypes. A multiplex PCR method for determination of capsule types of Campylobacter jejuni which is simpler and more affordable than classical Penner typing was developed. Primers specific for each capsule type were designed on the basis of a database of gene sequences from the variable capsule loci of 8 strains of major serotypes sequenced in this study and 10 published sequences of other serotypes. DNA sequence analysis revealed a mosaic nature of the capsule loci, suggesting reassortment of genes by horizontal transfer, and demonstrated a high degree of conservation of genes within Penner complexes. The multiplex PCR can distinguish 17 individual serotypes in two PCRs with sensitivities and specificities ranging from 90 to 100% using 244 strains of known Penner type.


Asunto(s)
Cápsulas Bacterianas/genética , Técnicas de Tipificación Bacteriana/métodos , Campylobacter jejuni/clasificación , Campylobacter jejuni/genética , Reacción en Cadena de la Polimerasa/métodos , Cartilla de ADN/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Humanos , Datos de Secuencia Molecular , Sensibilidad y Especificidad , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA