Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
ACS Synth Biol ; 9(1): 53-62, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31841635

RESUMEN

Caprolactam is an important polymer precursor to nylon traditionally derived from petroleum and produced on a scale of 5 million tons per year. Current biological pathways for the production of caprolactam are inefficient with titers not exceeding 2 mg/L, necessitating novel pathways for its production. As development of novel metabolic routes often require thousands of designs and result in low product titers, a highly sensitive biosensor for the final product has the potential to rapidly speed up development times. Here we report a highly sensitive biosensor for valerolactam and caprolactam from Pseudomonas putida KT2440 which is >1000× more sensitive to an exogenous ligand than previously reported sensors. Manipulating the expression of the sensor oplR (PP_3516) substantially altered the sensing parameters, with various vectors showing Kd values ranging from 700 nM (79.1 µg/L) to 1.2 mM (135.6 mg/L). Our most sensitive construct was able to detect in vivo production of caprolactam above background at ∼6 µg/L. The high sensitivity and range of OplR is a powerful tool toward the development of novel routes to the biological synthesis of caprolactam.


Asunto(s)
Técnicas Biosensibles/métodos , Caprolactama/metabolismo , Lactamas/metabolismo , Ingeniería Metabólica/métodos , Pseudomonas putida/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ligandos , Plásmidos/genética
2.
Sci Rep ; 8(1): 1590, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29371642

RESUMEN

pSC101 is a narrow host range, low-copy plasmid commonly used for genetically manipulating Escherichia coli. As a byproduct of a genetic screen for a more sensitive lactam biosensor, we identified multiple novel mutations that increase the copy number of plasmids with the pSC101 origin. All mutations identified in this study occurred on plasmids which also contained at least one mutation localized to the RepA protein encoded within the origin. Homology modelling predicts that many of these mutations occur within the dimerization interface of RepA. Mutant RepA resulted in plasmid copy numbers between ~31 and ~113 copies/cell, relative to ~5 copies/cell in wild-type pSC101 plasmids. Combining the mutations that were predicted to disrupt multiple contacts on the dimerization interface resulted in copy numbers of ~500 copies/cell, while also attenuating growth in host strains. Fluorescent protein production expressed from an arabinose-inducible promoter on mutant origin derived plasmids did correlate with copy number. Plasmids harboring RepA with one of two mutations, E83K and N99D, resulted in fluorescent protein production similar to that from p15a- (~20 copies/cell) and ColE1- (~31 copies/cell) based plasmids, respectively. The mutant copy number variants retained compatibility with p15a, pBBR, and ColE1 origins of replication. These pSC101 variants may be useful in future metabolic engineering efforts that require medium or high-copy vectors compatible with p15a- and ColE1-based plasmids.


Asunto(s)
Variaciones en el Número de Copia de ADN , Escherichia coli/genética , Mutación , Plásmidos , Origen de Réplica , ADN Helicasas/genética , Proteínas Mutantes/genética , Transactivadores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA