RESUMEN
BACKGROUND: A detailed characterization of patients with COVID-19 living with obesity has not yet been undertaken. We aimed to describe and compare the demographics, medical conditions, and outcomes of COVID-19 patients living with obesity (PLWO) to those of patients living without obesity. METHODS: We conducted a cohort study based on outpatient/inpatient care and claims data from January to June 2020 from Spain, the UK, and the US. We used six databases standardized to the OMOP common data model. We defined two non-mutually exclusive cohorts of patients diagnosed and/or hospitalized with COVID-19; patients were followed from index date to 30 days or death. We report the frequency of demographics, prior medical conditions, and 30-days outcomes (hospitalization, events, and death) by obesity status. RESULTS: We included 627 044 (Spain: 122 058, UK: 2336, and US: 502 650) diagnosed and 160 013 (Spain: 18 197, US: 141 816) hospitalized patients with COVID-19. The prevalence of obesity was higher among patients hospitalized (39.9%, 95%CI: 39.8-40.0) than among those diagnosed with COVID-19 (33.1%; 95%CI: 33.0-33.2). In both cohorts, PLWO were more often female. Hospitalized PLWO were younger than patients without obesity. Overall, COVID-19 PLWO were more likely to have prior medical conditions, present with cardiovascular and respiratory events during hospitalization, or require intensive services compared to COVID-19 patients without obesity. CONCLUSION: We show that PLWO differ from patients without obesity in a wide range of medical conditions and present with more severe forms of COVID-19, with higher hospitalization rates and intensive services requirements. These findings can help guiding preventive strategies of COVID-19 infection and complications and generating hypotheses for causal inference studies.
Asunto(s)
COVID-19/epidemiología , Obesidad/epidemiología , Adolescente , Adulto , Anciano , COVID-19/mortalidad , Estudios de Cohortes , Comorbilidad , Femenino , Hospitalización , Humanos , Masculino , Persona de Mediana Edad , Prevalencia , Factores de Riesgo , España/epidemiología , Reino Unido/epidemiología , Estados Unidos/epidemiología , Adulto JovenRESUMEN
OBJECTIVE: Patients with autoimmune diseases were advised to shield to avoid coronavirus disease 2019 (COVID-19), but information on their prognosis is lacking. We characterized 30-day outcomes and mortality after hospitalization with COVID-19 among patients with prevalent autoimmune diseases, and compared outcomes after hospital admissions among similar patients with seasonal influenza. METHODS: A multinational network cohort study was conducted using electronic health records data from Columbia University Irving Medical Center [USA, Optum (USA), Department of Veterans Affairs (USA), Information System for Research in Primary Care-Hospitalization Linked Data (Spain) and claims data from IQVIA Open Claims (USA) and Health Insurance and Review Assessment (South Korea). All patients with prevalent autoimmune diseases, diagnosed and/or hospitalized between January and June 2020 with COVID-19, and similar patients hospitalized with influenza in 2017-18 were included. Outcomes were death and complications within 30 days of hospitalization. RESULTS: We studied 133 589 patients diagnosed and 48 418 hospitalized with COVID-19 with prevalent autoimmune diseases. Most patients were female, aged ≥50 years with previous comorbidities. The prevalence of hypertension (45.5-93.2%), chronic kidney disease (14.0-52.7%) and heart disease (29.0-83.8%) was higher in hospitalized vs diagnosed patients with COVID-19. Compared with 70 660 hospitalized with influenza, those admitted with COVID-19 had more respiratory complications including pneumonia and acute respiratory distress syndrome, and higher 30-day mortality (2.2-4.3% vs 6.32-24.6%). CONCLUSION: Compared with influenza, COVID-19 is a more severe disease, leading to more complications and higher mortality.
Asunto(s)
Enfermedades Autoinmunes/mortalidad , Enfermedades Autoinmunes/virología , COVID-19/mortalidad , Hospitalización/estadística & datos numéricos , Gripe Humana/mortalidad , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/inmunología , Estudios de Cohortes , Femenino , Humanos , Gripe Humana/inmunología , Masculino , Persona de Mediana Edad , Prevalencia , Pronóstico , República de Corea/epidemiología , SARS-CoV-2 , España/epidemiología , Estados Unidos/epidemiología , Adulto JovenRESUMEN
OBJECTIVES: Concern has been raised in the rheumatology community regarding recent regulatory warnings that HCQ used in the coronavirus disease 2019 pandemic could cause acute psychiatric events. We aimed to study whether there is risk of incident depression, suicidal ideation or psychosis associated with HCQ as used for RA. METHODS: We performed a new-user cohort study using claims and electronic medical records from 10 sources and 3 countries (Germany, UK and USA). RA patients ≥18 years of age and initiating HCQ were compared with those initiating SSZ (active comparator) and followed up in the short (30 days) and long term (on treatment). Study outcomes included depression, suicide/suicidal ideation and hospitalization for psychosis. Propensity score stratification and calibration using negative control outcomes were used to address confounding. Cox models were fitted to estimate database-specific calibrated hazard ratios (HRs), with estimates pooled where I2 <40%. RESULTS: A total of 918 144 and 290 383 users of HCQ and SSZ, respectively, were included. No consistent risk of psychiatric events was observed with short-term HCQ (compared with SSZ) use, with meta-analytic HRs of 0.96 (95% CI 0.79, 1.16) for depression, 0.94 (95% CI 0.49, 1.77) for suicide/suicidal ideation and 1.03 (95% CI 0.66, 1.60) for psychosis. No consistent long-term risk was seen, with meta-analytic HRs of 0.94 (95% CI 0.71, 1.26) for depression, 0.77 (95% CI 0.56, 1.07) for suicide/suicidal ideation and 0.99 (95% CI 0.72, 1.35) for psychosis. CONCLUSION: HCQ as used to treat RA does not appear to increase the risk of depression, suicide/suicidal ideation or psychosis compared with SSZ. No effects were seen in the short or long term. Use at a higher dose or for different indications needs further investigation. TRIAL REGISTRATION: Registered with EU PAS (reference no. EUPAS34497; http://www.encepp.eu/encepp/viewResource.htm? id=34498). The full study protocol and analysis source code can be found at https://github.com/ohdsi-studies/Covid19EstimationHydroxychloroquine2.
Asunto(s)
Antirreumáticos/efectos adversos , Tratamiento Farmacológico de COVID-19 , Depresión/inducido químicamente , Depresión/epidemiología , Hidroxicloroquina/efectos adversos , Psicosis Inducidas por Sustancias/epidemiología , Psicosis Inducidas por Sustancias/etiología , Ideación Suicida , Suicidio/estadística & datos numéricos , Adolescente , Adulto , Anciano , Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Estudios de Cohortes , Femenino , Alemania , Humanos , Hidroxicloroquina/uso terapéutico , Masculino , Persona de Mediana Edad , Medición de Riesgo , Reino Unido , Estados Unidos , Adulto JovenRESUMEN
OBJECTIVE: To conduct a retrospective analysis of sequential cross-sectional data of opioid prescribing practices in patients with no prior history of opioid use. METHODS: Individuals filling an oral opioid prescription who had 1 year of prior observation were identified from four different administrative claims databases for the period between January 1, 2002, and December 31, 2018: IBM MarketScan® Commercial Database (CCAE), Multi-State Medicaid Database (MDCD), Medicare Supplemental Database (MDCR), and Optum©â¯De-Identifiedâ¯Clinformatics® Data Mart Database. Outcomes included incidence of new opioid use and characteristics of patients' first opioid prescription, including dispensed morphine milligram equivalent (MME) per day, total MME dispensed, total MME ≥300, and days' supply of prescription for ≤3 or ≥30 days. RESULTS: There were 40,600,696 new opioid users identified. The incidence of new opioid use in the past 17 years ranged from 6% to 11% within the two commercially insured databases. Incidence decreased over time in MDCD and was consistently higher in MDCR. Total MME dispensed decreased in MDCD and increased in CCAE, with no major changes in the other databases. The proportion of patients receiving ≥30-day prescriptions decreased and the proportion of patients receiving ≤3-day prescriptions increased in MDCD, while ≥30-day prescriptions in the Optum database dramatically increased (low of 3.0% in 2003 to peak of 16.9% in 2017). CONCLUSIONS: Opioid prescribing practices varied across different populations of insured individuals during the past 17 years. The most substantial changes in opioid prescriptions over time have occurred in MDCD, with reductions in use across multiple metrics.
Asunto(s)
Analgésicos Opioides , Pautas de la Práctica en Medicina , Anciano , Analgésicos Opioides/uso terapéutico , Estudios Transversales , Humanos , Medicare , Estudios Retrospectivos , Estados Unidos/epidemiologíaRESUMEN
PURPOSE: To characterize the incidence of kidney failure associated with intravitreal anti-VEGF exposure; and compare the risk of kidney failure in patients treated with ranibizumab, aflibercept, or bevacizumab. DESIGN: Retrospective cohort study across 12 databases in the Observational Health Data Sciences and Informatics (OHDSI) network. SUBJECTS: Subjects aged ≥ 18 years with ≥ 3 monthly intravitreal anti-VEGF medications for a blinding disease (diabetic retinopathy, diabetic macular edema, exudative age-related macular degeneration, or retinal vein occlusion). METHODS: The standardized incidence proportions and rates of kidney failure while on treatment with anti-VEGF were calculated. For each comparison (e.g., aflibercept versus ranibizumab), patients from each group were matched 1:1 using propensity scores. Cox proportional hazards models were used to estimate the risk of kidney failure while on treatment. A random effects meta-analysis was performed to combine each database's hazard ratio (HR) estimate into a single network-wide estimate. MAIN OUTCOME MEASURES: Incidence of kidney failure while on anti-VEGF treatment, and time from cohort entry to kidney failure. RESULTS: Of the 6.1 million patients with blinding diseases, 37 189 who received ranibizumab, 39 447 aflibercept, and 163 611 bevacizumab were included; the total treatment exposure time was 161 724 person-years. The average standardized incidence proportion of kidney failure was 678 per 100 000 persons (range, 0-2389), and incidence rate 742 per 100 000 person-years (range, 0-2661). The meta-analysis HR of kidney failure comparing aflibercept with ranibizumab was 1.01 (95% confidence interval [CI], 0.70-1.47; P = 0.45), ranibizumab with bevacizumab 0.95 (95% CI, 0.68-1.32; P = 0.62), and aflibercept with bevacizumab 0.95 (95% CI, 0.65-1.39; P = 0.60). CONCLUSIONS: There was no substantially different relative risk of kidney failure between those who received ranibizumab, bevacizumab, or aflibercept. Practicing ophthalmologists and nephrologists should be aware of the risk of kidney failure among patients receiving intravitreal anti-VEGF medications and that there is little empirical evidence to preferentially choose among the specific intravitreal anti-VEGF agents. FINANCIAL DISCLOSURES: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Asunto(s)
Inhibidores de la Angiogénesis , Bevacizumab , Inyecciones Intravítreas , Ranibizumab , Receptores de Factores de Crecimiento Endotelial Vascular , Proteínas Recombinantes de Fusión , Insuficiencia Renal , Factor A de Crecimiento Endotelial Vascular , Humanos , Receptores de Factores de Crecimiento Endotelial Vascular/administración & dosificación , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/efectos adversos , Ranibizumab/administración & dosificación , Ranibizumab/efectos adversos , Bevacizumab/administración & dosificación , Bevacizumab/efectos adversos , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/efectos adversos , Estudios Retrospectivos , Masculino , Femenino , Insuficiencia Renal/epidemiología , Insuficiencia Renal/complicaciones , Insuficiencia Renal/inducido químicamente , Incidencia , Anciano , Persona de Mediana Edad , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/epidemiología , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/complicaciones , Estudios de Seguimiento , Factores de Riesgo , Edema Macular/tratamiento farmacológico , Edema Macular/epidemiología , Edema Macular/diagnóstico , Oclusión de la Vena Retiniana/tratamiento farmacológico , Oclusión de la Vena Retiniana/diagnóstico , Oclusión de la Vena Retiniana/complicaciones , Oclusión de la Vena Retiniana/epidemiología , Ceguera/epidemiología , Ceguera/inducido químicamente , Ceguera/prevención & control , Ceguera/diagnóstico , Ceguera/etiologíaRESUMEN
Objective: Developing accurate phenotype definitions is critical in obtaining reliable and reproducible background rates in safety research. This study aims to illustrate the differences in background incidence rates by comparing definitions for a given outcome. Materials and Methods: We used 16 data sources to systematically generate and evaluate outcomes for 13 adverse events and their overall background rates. We examined the effect of different modifications (inpatient setting, standardization of code set, and code set changes) to the computable phenotype on background incidence rates. Results: Rate ratios (RRs) of the incidence rates from each computable phenotype definition varied across outcomes, with inpatient restriction showing the highest variation from 1 to 11.93. Standardization of code set RRs ranges from 1 to 1.64, and code set changes range from 1 to 2.52. Discussion: The modification that has the highest impact is requiring inpatient place of service, leading to at least a 2-fold higher incidence rate in the base definition. Standardization showed almost no change when using source code variations. The strength of the effect in the inpatient restriction is highly dependent on the outcome. Changing definitions from broad to narrow showed the most variability by age/gender/database across phenotypes and less than a 2-fold increase in rate compared to the base definition. Conclusion: Characterization of outcomes across a network of databases yields insights into sensitivity and specificity trade-offs when definitions are altered. Outcomes should be thoroughly evaluated prior to use for background rates for their plausibility for use across a global network.
RESUMEN
Background: Adverse events of special interest (AESIs) were pre-specified to be monitored for the COVID-19 vaccines. Some AESIs are not only associated with the vaccines, but with COVID-19. Our aim was to characterise the incidence rates of AESIs following SARS-CoV-2 infection in patients and compare these to historical rates in the general population. Methods: A multi-national cohort study with data from primary care, electronic health records, and insurance claims mapped to a common data model. This study's evidence was collected between Jan 1, 2017 and the conclusion of each database (which ranged from Jul 2020 to May 2022). The 16 pre-specified prevalent AESIs were: acute myocardial infarction, anaphylaxis, appendicitis, Bell's palsy, deep vein thrombosis, disseminated intravascular coagulation, encephalomyelitis, Guillain- Barré syndrome, haemorrhagic stroke, non-haemorrhagic stroke, immune thrombocytopenia, myocarditis/pericarditis, narcolepsy, pulmonary embolism, transverse myelitis, and thrombosis with thrombocytopenia. Age-sex standardised incidence rate ratios (SIR) were estimated to compare post-COVID-19 to pre-pandemic rates in each of the databases. Findings: Substantial heterogeneity by age was seen for AESI rates, with some clearly increasing with age but others following the opposite trend. Similarly, differences were also observed across databases for same health outcome and age-sex strata. All studied AESIs appeared consistently more common in the post-COVID-19 compared to the historical cohorts, with related meta-analytic SIRs ranging from 1.32 (1.05 to 1.66) for narcolepsy to 11.70 (10.10 to 13.70) for pulmonary embolism. Interpretation: Our findings suggest all AESIs are more common after COVID-19 than in the general population. Thromboembolic events were particularly common, and over 10-fold more so. More research is needed to contextualise post-COVID-19 complications in the longer term. Funding: None.
RESUMEN
Objective: Background incidence rates are routinely used in safety studies to evaluate an association of an exposure and outcome. Systematic research on sensitivity of rates to the choice of the study parameters is lacking. Materials and Methods: We used 12 data sources to systematically examine the influence of age, race, sex, database, time-at-risk, season and year, prior observation and clean window on incidence rates using 15 adverse events of special interest for COVID-19 vaccines as an example. For binary comparisons we calculated incidence rate ratios and performed random-effect meta-analysis. Results: We observed a wide variation of background rates that goes well beyond age and database effects previously observed. While rates vary up to a factor of 1,000 across age groups, even after adjusting for age and sex, the study showed residual bias due to the other parameters. Rates were highly influenced by the choice of anchoring (e.g., health visit, vaccination, or arbitrary date) for the time-at-risk start. Anchoring on a healthcare encounter yielded higher incidence comparing to a random date, especially for short time-at-risk. Incidence rates were highly influenced by the choice of the database (varying by up to a factor of 100), clean window choice and time-at-risk duration, and less so by secular or seasonal trends. Conclusion: Comparing background to observed rates requires appropriate adjustment and careful time-at-risk start and duration choice. Results should be interpreted in the context of study parameter choices.
RESUMEN
Purpose: Alpha-1 blockers, often used to treat benign prostatic hyperplasia (BPH), have been hypothesized to prevent COVID-19 complications by minimising cytokine storm release. The proposed treatment based on this hypothesis currently lacks support from reliable real-world evidence, however. We leverage an international network of large-scale healthcare databases to generate comprehensive evidence in a transparent and reproducible manner. Methods: In this international cohort study, we deployed electronic health records from Spain (SIDIAP) and the United States (Department of Veterans Affairs, Columbia University Irving Medical Center, IQVIA OpenClaims, Optum DOD, Optum EHR). We assessed association between alpha-1 blocker use and risks of three COVID-19 outcomes-diagnosis, hospitalization, and hospitalization requiring intensive services-using a prevalent-user active-comparator design. We estimated hazard ratios using state-of-the-art techniques to minimize potential confounding, including large-scale propensity score matching/stratification and negative control calibration. We pooled database-specific estimates through random effects meta-analysis. Results: Our study overall included 2.6 and 0.46 million users of alpha-1 blockers and of alternative BPH medications. We observed no significant difference in their risks for any of the COVID-19 outcomes, with our meta-analytic HR estimates being 1.02 (95% CI: 0.92-1.13) for diagnosis, 1.00 (95% CI: 0.89-1.13) for hospitalization, and 1.15 (95% CI: 0.71-1.88) for hospitalization requiring intensive services. Conclusion: We found no evidence of the hypothesized reduction in risks of the COVID-19 outcomes from the prevalent-use of alpha-1 blockers-further research is needed to identify effective therapies for this novel disease.
RESUMEN
BACKGROUND: Identification of rheumatoid arthritis (RA) patients at high risk of adverse health outcomes remains a major challenge. We aimed to develop and validate prediction models for a variety of adverse health outcomes in RA patients initiating first-line methotrexate (MTX) monotherapy. METHODS: Data from 15 claims and electronic health record databases across 9 countries were used. Models were developed and internally validated on Optum® De-identified Clinformatics® Data Mart Database using L1-regularized logistic regression to estimate the risk of adverse health outcomes within 3 months (leukopenia, pancytopenia, infection), 2 years (myocardial infarction (MI) and stroke), and 5 years (cancers [colorectal, breast, uterine] after treatment initiation. Candidate predictors included demographic variables and past medical history. Models were externally validated on all other databases. Performance was assessed using the area under the receiver operator characteristic curve (AUC) and calibration plots. FINDINGS: Models were developed and internally validated on 21,547 RA patients and externally validated on 131,928 RA patients. Models for serious infection (AUC: internal 0.74, external ranging from 0.62 to 0.83), MI (AUC: internal 0.76, external ranging from 0.56 to 0.82), and stroke (AUC: internal 0.77, external ranging from 0.63 to 0.95), showed good discrimination and adequate calibration. Models for the other outcomes showed modest internal discrimination (AUC < 0.65) and were not externally validated. INTERPRETATION: We developed and validated prediction models for a variety of adverse health outcomes in RA patients initiating first-line MTX monotherapy. Final models for serious infection, MI, and stroke demonstrated good performance across multiple databases and can be studied for clinical use. FUNDING: This activity under the European Health Data & Evidence Network (EHDEN) has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 806968. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA.
Asunto(s)
Antirreumáticos , Artritis Reumatoide , Accidente Cerebrovascular , Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Estudios de Cohortes , Humanos , Metotrexato/uso terapéutico , Evaluación de Resultado en la Atención de Salud , Accidente Cerebrovascular/etiologíaRESUMEN
INTRODUCTION: Vaccine-induced thrombotic thrombocytopenia (VITT) has been identified as a rare but serious adverse event associated with coronavirus disease 2019 (COVID-19) vaccines. OBJECTIVES: In this study, we explored the pre-pandemic co-occurrence of thrombosis with thrombocytopenia (TWT) using 17 observational health data sources across the world. We applied multiple TWT definitions, estimated the background rate of TWT, characterized TWT patients, and explored the makeup of thrombosis types among TWT patients. METHODS: We conducted an international network retrospective cohort study using electronic health records and insurance claims data, estimating background rates of TWT amongst persons observed from 2017 to 2019. Following the principles of existing VITT clinical definitions, TWT was defined as patients with a diagnosis of embolic or thrombotic arterial or venous events and a diagnosis or measurement of thrombocytopenia within 7 days. Six TWT phenotypes were considered, which varied in the approach taken in defining thrombosis and thrombocytopenia in real world data. RESULTS: Overall TWT incidence rates ranged from 1.62 to 150.65 per 100,000 person-years. Substantial heterogeneity exists across data sources and by age, sex, and alternative TWT phenotypes. TWT patients were likely to be men of older age with various comorbidities. Among the thrombosis types, arterial thrombotic events were the most common. CONCLUSION: Our findings suggest that identifying VITT in observational data presents a substantial challenge, as implementing VITT case definitions based on the co-occurrence of TWT results in large and heterogeneous incidence rate and in a cohort of patints with baseline characteristics that are inconsistent with the VITT cases reported to date.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Trombocitopenia , Trombosis , Algoritmos , Vacunas contra la COVID-19/efectos adversos , Estudios de Cohortes , Humanos , Fenotipo , Estudios Retrospectivos , Trombocitopenia/inducido químicamente , Trombocitopenia/epidemiología , Trombosis/inducido químicamente , Trombosis/etiologíaRESUMEN
Purpose: Routinely collected real world data (RWD) have great utility in aiding the novel coronavirus disease (COVID-19) pandemic response. Here we present the international Observational Health Data Sciences and Informatics (OHDSI) Characterizing Health Associated Risks and Your Baseline Disease In SARS-COV-2 (CHARYBDIS) framework for standardisation and analysis of COVID-19 RWD. Patients and Methods: We conducted a descriptive retrospective database study using a federated network of data partners in the United States, Europe (the Netherlands, Spain, the UK, Germany, France and Italy) and Asia (South Korea and China). The study protocol and analytical package were released on 11th June 2020 and are iteratively updated via GitHub. We identified three non-mutually exclusive cohorts of 4,537,153 individuals with a clinical COVID-19 diagnosis or positive test, 886,193 hospitalized with COVID-19, and 113,627 hospitalized with COVID-19 requiring intensive services. Results: We aggregated over 22,000 unique characteristics describing patients with COVID-19. All comorbidities, symptoms, medications, and outcomes are described by cohort in aggregate counts and are readily available online. Globally, we observed similarities in the USA and Europe: more women diagnosed than men but more men hospitalized than women, most diagnosed cases between 25 and 60 years of age versus most hospitalized cases between 60 and 80 years of age. South Korea differed with more women than men hospitalized. Common comorbidities included type 2 diabetes, hypertension, chronic kidney disease and heart disease. Common presenting symptoms were dyspnea, cough and fever. Symptom data availability was more common in hospitalized cohorts than diagnosed. Conclusion: We constructed a global, multi-centre view to describe trends in COVID-19 progression, management and evolution over time. By characterising baseline variability in patients and geography, our work provides critical context that may otherwise be misconstrued as data quality issues. This is important as we perform studies on adverse events of special interest in COVID-19 vaccine surveillance.
RESUMEN
OBJECTIVE: To quantify the background incidence rates of 15 prespecified adverse events of special interest (AESIs) associated with covid-19 vaccines. DESIGN: Multinational network cohort study. SETTING: Electronic health records and health claims data from eight countries: Australia, France, Germany, Japan, the Netherlands, Spain, the United Kingdom, and the United States, mapped to a common data model. PARTICIPANTS: 126 661 070 people observed for at least 365 days before 1 January 2017, 2018, or 2019 from 13 databases. MAIN OUTCOME MEASURES: Events of interests were 15 prespecified AESIs (non-haemorrhagic and haemorrhagic stroke, acute myocardial infarction, deep vein thrombosis, pulmonary embolism, anaphylaxis, Bell's palsy, myocarditis or pericarditis, narcolepsy, appendicitis, immune thrombocytopenia, disseminated intravascular coagulation, encephalomyelitis (including acute disseminated encephalomyelitis), Guillain-Barré syndrome, and transverse myelitis). Incidence rates of AESIs were stratified by age, sex, and database. Rates were pooled across databases using random effects meta-analyses and classified according to the frequency categories of the Council for International Organizations of Medical Sciences. RESULTS: Background rates varied greatly between databases. Deep vein thrombosis ranged from 387 (95% confidence interval 370 to 404) per 100 000 person years in UK CPRD GOLD data to 1443 (1416 to 1470) per 100 000 person years in US IBM MarketScan Multi-State Medicaid data among women aged 65 to 74 years. Some AESIs increased with age. For example, myocardial infarction rates in men increased from 28 (27 to 29) per 100 000 person years among those aged 18-34 years to 1400 (1374 to 1427) per 100 000 person years in those older than 85 years in US Optum electronic health record data. Other AESIs were more common in young people. For example, rates of anaphylaxis among boys and men were 78 (75 to 80) per 100 000 person years in those aged 6-17 years and 8 (6 to 10) per 100 000 person years in those older than 85 years in Optum electronic health record data. Meta-analytic estimates of AESI rates were classified according to age and sex. CONCLUSION: This study found large variations in the observed rates of AESIs by age group and sex, showing the need for stratification or standardisation before using background rates for safety surveillance. Considerable population level heterogeneity in AESI rates was found between databases.
Asunto(s)
Anafilaxia , COVID-19 , Trombosis de la Vena , Adolescente , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Estudios de Cohortes , Femenino , Humanos , Incidencia , Masculino , Estados Unidos/epidemiologíaRESUMEN
BACKGROUND: As large-scale immunization programs against COVID-19 proceed around the world, safety signals will emerge that need rapid evaluation. We report population-based, age- and sex-specific background incidence rates of potential adverse events of special interest (AESI) in eight countries using thirteen databases. METHODS: This multi-national network cohort study included eight electronic medical record and five administrative claims databases from Australia, France, Germany, Japan, Netherlands, Spain, the United Kingdom, and the United States, mapped to a common data model. People observed for at least 365 days before 1 January 2017, 2018, or 2019 were included. We based study outcomes on lists published by regulators: acute myocardial infarction, anaphylaxis, appendicitis, Bell's palsy, deep vein thrombosis, disseminated intravascular coagulation, encephalomyelitis, Guillain-Barre syndrome, hemorrhagic and non-hemorrhagic stroke, immune thrombocytopenia, myocarditis/pericarditis, narcolepsy, pulmonary embolism, and transverse myelitis. We calculated incidence rates stratified by age, sex, and database. We pooled rates across databases using random effects meta-analyses. We classified meta-analytic estimates into Council of International Organizations of Medical Sciences categories: very common, common, uncommon, rare, or very rare. FINDINGS: We analysed 126,661,070 people. Rates varied greatly between databases and by age and sex. Some AESI (e.g., myocardial infarction, Guillain-Barre syndrome) increased with age, while others (e.g., anaphylaxis, appendicitis) were more common in young people. As a result, AESI were classified differently according to age. For example, myocardial infarction was very rare in children, rare in women aged 35-54 years, uncommon in men and women aged 55-84 years, and common in those aged ≥85 years. INTERPRETATION: We report robust baseline rates of prioritised AESI across 13 databases. Age, sex, and variation between databases should be considered if background AESI rates are compared to event rates observed with COVID-19 vaccines.
RESUMEN
BACKGROUND AND OBJECTIVE: As a response to the ongoing COVID-19 pandemic, several prediction models in the existing literature were rapidly developed, with the aim of providing evidence-based guidance. However, none of these COVID-19 prediction models have been found to be reliable. Models are commonly assessed to have a risk of bias, often due to insufficient reporting, use of non-representative data, and lack of large-scale external validation. In this paper, we present the Observational Health Data Sciences and Informatics (OHDSI) analytics pipeline for patient-level prediction modeling as a standardized approach for rapid yet reliable development and validation of prediction models. We demonstrate how our analytics pipeline and open-source software tools can be used to answer important prediction questions while limiting potential causes of bias (e.g., by validating phenotypes, specifying the target population, performing large-scale external validation, and publicly providing all analytical source code). METHODS: We show step-by-step how to implement the analytics pipeline for the question: 'In patients hospitalized with COVID-19, what is the risk of death 0 to 30 days after hospitalization?'. We develop models using six different machine learning methods in a USA claims database containing over 20,000 COVID-19 hospitalizations and externally validate the models using data containing over 45,000 COVID-19 hospitalizations from South Korea, Spain, and the USA. RESULTS: Our open-source software tools enabled us to efficiently go end-to-end from problem design to reliable Model Development and evaluation. When predicting death in patients hospitalized with COVID-19, AdaBoost, random forest, gradient boosting machine, and decision tree yielded similar or lower internal and external validation discrimination performance compared to L1-regularized logistic regression, whereas the MLP neural network consistently resulted in lower discrimination. L1-regularized logistic regression models were well calibrated. CONCLUSION: Our results show that following the OHDSI analytics pipeline for patient-level prediction modelling can enable the rapid development towards reliable prediction models. The OHDSI software tools and pipeline are open source and available to researchers from all around the world.
Asunto(s)
COVID-19 , Pandemias , Humanos , Modelos Logísticos , Aprendizaje Automático , SARS-CoV-2RESUMEN
Alpha-1 blockers, often used to treat benign prostate hyperplasia (BPH), have been hypothesized to prevent COVID-19 complications by minimising cytokine storms release. We conducted a prevalent-user active-comparator cohort study to assess association between alpha-1 blocker use and risks of three COVID-19 outcomes: diagnosis, hospitalization, and hospitalization requiring intensive services. Our study included 2.6 and 0.46 million users of alpha-1 blockers and of alternative BPH therapy during the period between November 2019 and January 2020, found in electronic health records from Spain (SIDIAP) and the United States (Department of Veterans Affairs, Columbia University Irving Medical Center, IQVIA OpenClaims, Optum DOD, Optum EHR). We estimated hazard ratios using state-of-the-art techniques to minimize potential confounding, including large-scale propensity score matching/stratification and negative control calibration. We found no differential risk for any of COVID-19 outcome, pointing to the need for further research on potential COVID-19 therapies.
RESUMEN
BACKGROUND: Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) have been postulated to affect susceptibility to COVID-19. Observational studies so far have lacked rigorous ascertainment adjustment and international generalisability. We aimed to determine whether use of ACEIs or ARBs is associated with an increased susceptibility to COVID-19 in patients with hypertension. METHODS: In this international, open science, cohort analysis, we used electronic health records from Spain (Information Systems for Research in Primary Care [SIDIAP]) and the USA (Columbia University Irving Medical Center data warehouse [CUIMC] and Department of Veterans Affairs Observational Medical Outcomes Partnership [VA-OMOP]) to identify patients aged 18 years or older with at least one prescription for ACEIs and ARBs (target cohort) or calcium channel blockers (CCBs) and thiazide or thiazide-like diuretics (THZs; comparator cohort) between Nov 1, 2019, and Jan 31, 2020. Users were defined separately as receiving either monotherapy with these four drug classes, or monotherapy or combination therapy (combination use) with other antihypertensive medications. We assessed four outcomes: COVID-19 diagnosis; hospital admission with COVID-19; hospital admission with pneumonia; and hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis. We built large-scale propensity score methods derived through a data-driven approach and negative control experiments across ten pairwise comparisons, with results meta-analysed to generate 1280 study effects. For each study effect, we did negative control outcome experiments using a possible 123 controls identified through a data-rich algorithm. This process used a set of predefined baseline patient characteristics to provide the most accurate prediction of treatment and balance among patient cohorts across characteristics. The study is registered with the EU Post-Authorisation Studies register, EUPAS35296. FINDINGS: Among 1â355â349 antihypertensive users (363â785 ACEI or ARB monotherapy users, 248â915 CCB or THZ monotherapy users, 711â799 ACEI or ARB combination users, and 473â076 CCB or THZ combination users) included in analyses, no association was observed between COVID-19 diagnosis and exposure to ACEI or ARB monotherapy versus CCB or THZ monotherapy (calibrated hazard ratio [HR] 0·98, 95% CI 0·84-1·14) or combination use exposure (1·01, 0·90-1·15). ACEIs alone similarly showed no relative risk difference when compared with CCB or THZ monotherapy (HR 0·91, 95% CI 0·68-1·21; with heterogeneity of >40%) or combination use (0·95, 0·83-1·07). Directly comparing ACEIs with ARBs demonstrated a moderately lower risk with ACEIs, which was significant with combination use (HR 0·88, 95% CI 0·79-0·99) and non-significant for monotherapy (0·85, 0·69-1·05). We observed no significant difference between drug classes for risk of hospital admission with COVID-19, hospital admission with pneumonia, or hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis across all comparisons. INTERPRETATION: No clinically significant increased risk of COVID-19 diagnosis or hospital admission-related outcomes associated with ACEI or ARB use was observed, suggesting users should not discontinue or change their treatment to decrease their risk of COVID-19. FUNDING: Wellcome Trust, UK National Institute for Health Research, US National Institutes of Health, US Department of Veterans Affairs, Janssen Research & Development, IQVIA, South Korean Ministry of Health and Welfare Republic, Australian National Health and Medical Research Council, and European Health Data and Evidence Network.
RESUMEN
BACKGROUND: We described the demographics, cancer subtypes, comorbidities, and outcomes of patients with a history of cancer and coronavirus disease 2019 (COVID-19). Second, we compared patients hospitalized with COVID-19 to patients diagnosed with COVID-19 and patients hospitalized with influenza. METHODS: We conducted a cohort study using eight routinely collected health care databases from Spain and the United States, standardized to the Observational Medical Outcome Partnership common data model. Three cohorts of patients with a history of cancer were included: (i) diagnosed with COVID-19, (ii) hospitalized with COVID-19, and (iii) hospitalized with influenza in 2017 to 2018. Patients were followed from index date to 30 days or death. We reported demographics, cancer subtypes, comorbidities, and 30-day outcomes. RESULTS: We included 366,050 and 119,597 patients diagnosed and hospitalized with COVID-19, respectively. Prostate and breast cancers were the most frequent cancers (range: 5%-18% and 1%-14% in the diagnosed cohort, respectively). Hematologic malignancies were also frequent, with non-Hodgkin's lymphoma being among the five most common cancer subtypes in the diagnosed cohort. Overall, patients were aged above 65 years and had multiple comorbidities. Occurrence of death ranged from 2% to 14% and from 6% to 26% in the diagnosed and hospitalized COVID-19 cohorts, respectively. Patients hospitalized with influenza (n = 67,743) had a similar distribution of cancer subtypes, sex, age, and comorbidities but lower occurrence of adverse events. CONCLUSIONS: Patients with a history of cancer and COVID-19 had multiple comorbidities and a high occurrence of COVID-19-related events. Hematologic malignancies were frequent. IMPACT: This study provides epidemiologic characteristics that can inform clinical care and etiologic studies.
Asunto(s)
COVID-19/mortalidad , Neoplasias/epidemiología , Evaluación de Resultado en la Atención de Salud/estadística & datos numéricos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Estudios de Cohortes , Comorbilidad , Bases de Datos Factuales , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Terapia de Inmunosupresión/efectos adversos , Gripe Humana/epidemiología , Masculino , Persona de Mediana Edad , Pandemias , Prevalencia , Factores de Riesgo , SARS-CoV-2 , España/epidemiología , Estados Unidos/epidemiología , Adulto JovenRESUMEN
OBJECTIVES: To characterize the demographics, comorbidities, symptoms, in-hospital treatments, and health outcomes among children and adolescents diagnosed or hospitalized with coronavirus disease 2019 (COVID-19) and to compare them in secondary analyses with patients diagnosed with previous seasonal influenza in 2017-2018. METHODS: International network cohort using real-world data from European primary care records (France, Germany, and Spain), South Korean claims and US claims, and hospital databases. We included children and adolescents diagnosed and/or hospitalized with COVID-19 at age <18 between January and June 2020. We described baseline demographics, comorbidities, symptoms, 30-day in-hospital treatments, and outcomes including hospitalization, pneumonia, acute respiratory distress syndrome, multisystem inflammatory syndrome in children, and death. RESULTS: A total of 242 158 children and adolescents diagnosed and 9769 hospitalized with COVID-19 and 2 084 180 diagnosed with influenza were studied. Comorbidities including neurodevelopmental disorders, heart disease, and cancer were more common among those hospitalized with versus diagnosed with COVID-19. Dyspnea, bronchiolitis, anosmia, and gastrointestinal symptoms were more common in COVID-19 than influenza. In-hospital prevalent treatments for COVID-19 included repurposed medications (<10%) and adjunctive therapies: systemic corticosteroids (6.8%-7.6%), famotidine (9.0%-28.1%), and antithrombotics such as aspirin (2.0%-21.4%), heparin (2.2%-18.1%), and enoxaparin (2.8%-14.8%). Hospitalization was observed in 0.3% to 1.3% of the cohort diagnosed with COVID-19, with undetectable (n < 5 per database) 30-day fatality. Thirty-day outcomes including pneumonia and hypoxemia were more frequent in COVID-19 than influenza. CONCLUSIONS: Despite negligible fatality, complications including hospitalization, hypoxemia, and pneumonia were more frequent in children and adolescents with COVID-19 than with influenza. Dyspnea, anosmia, and gastrointestinal symptoms could help differentiate diagnoses. A wide range of medications was used for the inpatient management of pediatric COVID-19.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Adolescente , Distribución por Edad , COVID-19/complicaciones , COVID-19/diagnóstico , COVID-19/epidemiología , Niño , Preescolar , Estudios de Cohortes , Comorbilidad , Bases de Datos Factuales , Diagnóstico Diferencial , Femenino , Francia/epidemiología , Alemania/epidemiología , Hospitalización/estadística & datos numéricos , Humanos , Lactante , Recién Nacido , Gripe Humana/complicaciones , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , Masculino , República de Corea/epidemiología , España/epidemiología , Evaluación de Síntomas , Factores de Tiempo , Resultado del Tratamiento , Estados Unidos/epidemiologíaRESUMEN
OBJECTIVE: To investigate the use of repurposed and adjuvant drugs in patients admitted to hospital with covid-19 across three continents. DESIGN: Multinational network cohort study. SETTING: Hospital electronic health records from the United States, Spain, and China, and nationwide claims data from South Korea. PARTICIPANTS: 303 264 patients admitted to hospital with covid-19 from January 2020 to December 2020. MAIN OUTCOME MEASURES: Prescriptions or dispensations of any drug on or 30 days after the date of hospital admission for covid-19. RESULTS: Of the 303 264 patients included, 290 131 were from the US, 7599 from South Korea, 5230 from Spain, and 304 from China. 3455 drugs were identified. Common repurposed drugs were hydroxychloroquine (used in from <5 (<2%) patients in China to 2165 (85.1%) in Spain), azithromycin (from 15 (4.9%) in China to 1473 (57.9%) in Spain), combined lopinavir and ritonavir (from 156 (<2%) in the VA-OMOP US to 2,652 (34.9%) in South Korea and 1285 (50.5%) in Spain), and umifenovir (0% in the US, South Korea, and Spain and 238 (78.3%) in China). Use of adjunctive drugs varied greatly, with the five most used treatments being enoxaparin, fluoroquinolones, ceftriaxone, vitamin D, and corticosteroids. Hydroxychloroquine use increased rapidly from March to April 2020 but declined steeply in May to June and remained low for the rest of the year. The use of dexamethasone and corticosteroids increased steadily during 2020. CONCLUSIONS: Multiple drugs were used in the first few months of the covid-19 pandemic, with substantial geographical and temporal variation. Hydroxychloroquine, azithromycin, lopinavir-ritonavir, and umifenovir (in China only) were the most prescribed repurposed drugs. Antithrombotics, antibiotics, H2 receptor antagonists, and corticosteroids were often used as adjunctive treatments. Research is needed on the comparative risk and benefit of these treatments in the management of covid-19.