Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
BJOG ; 130(12): 1466-1472, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37218438

RESUMEN

OBJECTIVE: To evaluate the effectiveness of virtual reality technology in reducing pain and anxiety during outpatient hysteroscopy. DESIGN: A prospective randomised controlled trial. SETTING: A London University Teaching Hospital. POPULATION: Women aged 18-70 years undergoing outpatient hysteroscopy procedures. METHODS: An unblinded randomised controlled trial was performed between March and October 2022 comparing standard outpatient hysteroscopy care with standard care with the addition of a virtual reality headset playing a virtual reality immersive scenario as a distraction technique. MAIN OUTCOME MEASURES: Pain and anxiety numeric rating scores (NRS) from 0 to 11. RESULTS: Eighty-three participants were randomly allocated to the control (n = 42) and virtual reality groups (n = 41). The virtual reality group experienced significantly less anxiety during the procedure than the control group (mean NRS 3.29 versus 4.73, mean difference 1.50; 95% confidence interval [CI] 0.12-2.88; P = 0.03). There was no difference in reported average pain (mean NRS 3.73. versus 4.24, mean difference 0.51; 95% CI -1.76 to 0.64; p = 0.41) or maximum pain scores (mean NRS 5.32 versus 5.07, mean difference 0.25; 95% CI -1.05 to 1.55; P = 0.71). CONCLUSIONS: The use of virtual reality technology as an adjunct to standard care can reduce patient-reported anxiety but not pain during outpatient hysteroscopy procedures. Continued improvements in the technology and the development of increasingly immersive environments may continue to increase the potential to improve the patient experience in this setting.


Asunto(s)
Pacientes Ambulatorios , Realidad Virtual , Humanos , Femenino , Embarazo , Manejo del Dolor/métodos , Histeroscopía/efectos adversos , Histeroscopía/métodos , Estudios Prospectivos , Dolor/etiología , Dolor/prevención & control , Ansiedad/etiología , Ansiedad/prevención & control
2.
J Clin Microbiol ; 58(11)2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32907990

RESUMEN

Aspergillus fumigatus has widely evolved resistance to the most commonly used class of antifungal chemicals, the azoles. Current methods for identifying azole resistance are time-consuming and depend on specialized laboratories. There is an urgent need for rapid detection of these emerging pathogens at point-of-care to provide the appropriate treatment in the clinic and to improve management of environmental reservoirs to mitigate the spread of antifungal resistance. Our study demonstrates the rapid and portable detection of the two most relevant genetic markers linked to azole resistance, the mutations TR34 and TR46, found in the promoter region of the gene encoding the azole target cyp51A. We developed a lab-on-a-chip platform consisting of: (i) tandem-repeat loop-mediated isothermal amplification; (ii) state-of-the-art complementary metal-oxide-semiconductor microchip technology for nucleic acid amplification detection; and (iii) a smartphone application for data acquisition, visualization, and cloud connectivity. Specific and sensitive detection was validated with isolates from clinical and environmental samples from 6 countries across 5 continents, showing a lower limit of detection of 10 genomic copies per reaction in less than 30 min. When fully integrated with a sample preparation module, this diagnostic system will enable the detection of this ubiquitous fungus at the point-of-care, and could help to improve clinical decision making, infection control, and epidemiological surveillance.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Antifúngicos/farmacología , Aspergillus fumigatus/genética , Azoles/farmacología , Farmacorresistencia Fúngica , Proteínas Fúngicas/genética , Humanos , Dispositivos Laboratorio en un Chip , Pruebas de Sensibilidad Microbiana , Técnicas de Diagnóstico Molecular , Mutación , Técnicas de Amplificación de Ácido Nucleico
3.
Artículo en Inglés | MEDLINE | ID: mdl-31235621

RESUMEN

Azole resistance in the opportunistic pathogen Aspergillus fumigatus is increasing, dominated primarily by the following two environmentally associated resistance alleles: TR34/L98H and TR46/Y121F/T289A. By sampling soils across the South of England, we assess the prevalence of azole-resistant A. fumigatus (ARAf) in samples collected in both urban and rural locations. We characterize the susceptibility profiles of the resistant isolates to three medical azoles, identify the underlying genetic basis of resistance, and investigate their genetic relationships. ARAf was detected in 6.7% of the soil samples, with a higher prevalence in urban (13.8%) than rural (1.1%) locations. Twenty isolates were confirmed to exhibit clinical breakpoints for resistance to at least one of three medical azoles, with 18 isolates exhibiting resistance to itraconazole, 6 to voriconazole, and 2 showing elevated minimum inhibitory concentrations to posaconazole. Thirteen of the resistant isolates harbored the TR34/L98H resistance allele, and six isolates carried the TR46/Y121F/T289A allele. The 20 azole-resistant isolates were spread across five csp1 genetic subtypes, t01, t02, t04B, t09, and t18 with t02 being the predominant subtype. Our study demonstrates that ARAf can be easily isolated in the South of England, especially in urban city centers, which appear to play an important role in the epidemiology of environmentally linked drug-resistant A. fumigatus.


Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Azoles/farmacología , Farmacorresistencia Fúngica/efectos de los fármacos , Microbiología del Suelo , Agricultura , Aspergilosis/microbiología , Aspergillus fumigatus/genética , Aspergillus fumigatus/aislamiento & purificación , Ciudades , Farmacorresistencia Fúngica/genética , Humanos , Pruebas de Sensibilidad Microbiana , Prevalencia , Reino Unido
4.
Bioinformatics ; 34(18): 3233-3234, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29897419

RESUMEN

Summary: The increase of antifungal drug resistance is a major global human health concern and threatens agriculture and food security; in order to tackle these concerns, it is important to understand the mechanisms that cause antifungal resistance. The curated Mycology Antifungal Resistance Database (MARDy) is a web-service of antifungal drug resistance mechanisms, including amino acid substitutions, tandem repeat sequences and genome ploidy. MARDy is implemented on a Linux, Apache, MySQL and PHP web development platform and includes a local installation of BLASTn of the database of curated genes. Availability and implementation: MARDy can be accessed at http://www.mardy.net and is free to use. The complete database can be retrieved, ordered by organism, gene and drug. Missing or new mycological antifungal resistance data can be relayed to the development team through a contribute entry form. Updates and news will be publicized via a dedicated Twitter feed: @MARDYfungi.


Asunto(s)
Bases de Datos Genéticas , Farmacorresistencia Fúngica/genética , Genes Fúngicos , Antifúngicos/farmacología , Humanos , Internet , Polimorfismo Genético
5.
J Chem Phys ; 145(5): 054503, 2016 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-27497561

RESUMEN

Energy relaxation from an excited phenyl group chemisorbed to the surface of a crystalline thin film of α-1,3,5-trinitro-1,3,5-triazacyclohexane (α-RDX) at 298 K and 1 atm is simulated using molecular dynamics. Two schemes are used to excite the phenyl group. In the first scheme, the excitation energy is added instantaneously as kinetic energy by rescaling momenta of the 11 atoms in the phenyl group. In the second scheme, the phenyl group is equilibrated at a higher temperature in the presence of static RDX geometries representative of the 298 K thin film. An analytical model based on ballistic phonon transport that requires only the harmonic part of the total Hamiltonian and includes no adjustable parameters is shown to predict, essentially quantitatively, the short-time dynamics of the kinetic energy relaxation (∼200 fs). The dynamics of the phenyl group for times longer than about 6 ps follows exponential decay and agrees qualitatively with the dynamics described by a master equation. Long-time heat propagation within the bulk of the crystal film is consistent with the heat equation.

6.
J Chem Phys ; 144(6): 064501, 2016 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-26874491

RESUMEN

In this report, we characterize the kinetics and dynamics of energy exchange between intramolecular and intermolecular degrees of freedom (DoF) in crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). All-atom molecular dynamics (MD) simulations are used to obtain predictions for relaxation from certain limiting initial distributions of energy between the intra- and intermolecular DoF. The results are used to parameterize a coarse-grained Dissipative Particle Dynamics at constant Energy (DPDE) model for TATB. Each TATB molecule in the DPDE model is represented as an all-atom, rigid-molecule mesoparticle, with explicit external (molecular translational and rotational) DoF and coarse-grained implicit internal (vibrational) DoF. In addition to conserving linear and angular momentum, the DPDE equations of motion conserve the total system energy provided that particles can exchange energy between their external and internal DoF. The internal temperature of a TATB molecule is calculated using an internal equation of state, which we develop here, and the temperatures of the external and internal DoF are coupled using a fluctuation-dissipation relation. The DPDE force expression requires specification of the input parameter σ that determines the rate at which energy is exchanged between external and internal DoF. We adjusted σ based on the predictions for relaxation processes obtained from MD simulations. The parameterized DPDE model was employed in large-scale simulations of shock compression of TATB. We show that the rate of energy exchange governed by σ can significantly influence the transient behavior of the system behind the shock.

7.
J Chem Phys ; 142(13): 134110, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25854231

RESUMEN

We show that for solids the effective Hessian matrix, averaged over the canonical ensemble, can be calculated from the force covariance matrix. This effective Hessian reduces to the standard Hessian as the temperature approaches zero, while at finite temperatures it implicitly includes anharmonic corrections. As a case study, we calculate the effective Hessians and the corresponding normal mode eigenvectors and frequencies for the crystalline organic explosives pentaerythritol tetranitrate and α-1,3,5-trinitro-1,3,5-triazacyclohexane. The resulting normal mode frequencies are compared to those obtained by diagonalizing the standard Hessian matrix of second derivatives in Cartesian displacements about the potential energy minimum. Effects of temperature and statistical noise on the effective Hessians and normal mode frequencies are discussed.

8.
J Chem Phys ; 143(9): 094706, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26342382

RESUMEN

Surface-initiated melting of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), a triclinic molecular crystal, was investigated using molecular dynamics simulations. Simulations were performed for the three principal crystallographic planes exposed to vacuum, with the normal vectors to the planes given by b × c, c × a, and a × b (where a, b, and c define the edge vectors of the unit cell), denoted as (100), (010), and (001), respectively. The best estimate of the normal melting temperature for TATB is 851 ± 5 K. The nature and extent of disordering of the crystal-vacuum interface depend on the exposed crystallographic face, with the (001) face exhibiting incomplete melting and superheating. This is attributed to the anisotropy of the inter-molecular hydrogen bonding and the propensity of the crystal to form stacking faults in directions approximately perpendicular to the (100) and (010) faces. For all three crystal orientations, formation of molecular vacancies in the lattice at the crystal-vacuum (or crystal-quasi-liquid layer) interface precedes the complete loss of order at the interface.

9.
J Chem Phys ; 142(1): 014303, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25573557

RESUMEN

Classical molecular dynamics simulations were performed to study the relaxation of nitromethane in an Ar bath (of 1000 atoms) at 300 K and pressures 10, 50, 75, 100, 125, 150, 300, and 400 atm. The molecule was instantaneously excited by statistically distributing 50 kcal/mol among the internal degrees of freedom. At each pressure, 1000 trajectories were integrated for 1000 ps, except for 10 atm, for which the integration time was 5000 ps. The computed ensemble-averaged rotational energy decay is ∼100 times faster than the vibrational energy decay. Both rotational and vibrational decay curves can be satisfactorily fit with the Lendvay-Schatz function, which involves two parameters: one for the initial rate and one for the curvature of the decay curve. The decay curves for all pressures exhibit positive curvature implying the rate slows as the molecule loses energy. The initial rotational relaxation rate is directly proportional to density over the interval of simulated densities, but the initial vibrational relaxation rate decreases with increasing density relative to the extrapolation of the limiting low-pressure proportionality to density. The initial vibrational relaxation rate and curvature are fit as functions of density. For the initial vibrational relaxation rate, the functional form of the fit arises from a combinatorial model for the frequency of nitromethane "simultaneously" colliding with multiple Ar atoms. Roll-off of the initial rate from its low-density extrapolation occurs because the cross section for collision events with L Ar atoms increases with L more slowly than L times the cross section for collision events with one Ar atom. The resulting density-dependent functions of the initial rate and curvature represent, reasonably well, all the vibrational decay curves except at the lowest density for which the functions overestimate the rate of decay. The decay over all gas phase densities is predicted by extrapolating the fits to condensed-phase densities.

10.
J Chem Phys ; 141(18): 184501, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25399151

RESUMEN

The anisotropic thermal conductivity was determined for initially defect-free and defective crystals of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), a material that exhibits a graphitic-like packing structure with stacked single-molecule-thick layers, using the reverse non-equilibrium molecular dynamics method and an established TATB molecular dynamics force field. Thermal conduction in TATB is predicted to be substantially higher and more anisotropic than in other related organic molecular explosives, with conduction along directions nominally in the plane of the molecular layers at least 68% greater than conduction along the direction exactly perpendicular to the layers. Finite-size effects along the conduction directions were assessed. The conductivity along directions nominally in the plane of the molecular layers was found to be insensitive to the supercell length along the conduction direction-a result commensurate with the estimated phonon mean free path, ∼6 Å. A small decrease in the conductivity normal to the layers was found for longer supercells and is likely due to increased phonon scattering as a result of dynamic structural transitions in the crystal. The thermal conductivity of TATB crystals containing vacancy defects was also determined and the variation of conductivity with crystal density was found to be both linear and anisotropic, with the introduction of vacancy defects leading to a greater percentage reduction in conduction for the direction perpendicular to the molecular layers.

11.
J Chem Phys ; 140(10): 104508, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24628183

RESUMEN

We have developed a method for calculating the cubic anharmonic couplings in molecular crystals for normal modes with the zero wave vector in the framework of classical mechanics, and have applied it, combined with perturbation theory, to obtain the linewidths of all infrared absorption lines of crystalline pentaerythritol tetranitrate in the terahertz region (<100 cm(-1)). Contributions of the up- and down-conversion processes to the total linewidth were calculated. The computed linewidths are in qualitative agreement with experimental data and the results of molecular dynamics simulations. Quantum corrections to the linewidths in the terahertz region are shown to be negligible.

12.
J Chem Phys ; 140(2): 024902, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24437906

RESUMEN

The mechanical and structural responses of hydroxyl-terminated cis-1,4-polybutadiene melts to shock waves were investigated by means of all-atom non-reactive molecular dynamics simulations. The simulations were performed using the OPLS-AA force field but with the standard 12-6 Lennard-Jones potential replaced by the Buckingham exponential-6 potential to better represent the interactions at high compression. Monodisperse systems containing 64, 128, and 256 backbone carbon atoms were studied. Supported shock waves were generated by impacting the samples onto stationary pistons at impact velocities of 1.0, 1.5, 2.0, and 2.5 km s(-1), yielding shock pressures between approximately 2.8 GPa and 12.5 GPa. Single-molecule structural properties (squared radii of gyration, asphericity parameters, and orientational order parameters) and mechanical properties (density, shock pressure, shock temperature, and shear stress) were analyzed using a geometric binning scheme to obtain spatio-temporal resolution in the reference frame centered on the shock front. Our results indicate that while shear stress behind the shock front is relieved on a ∼0.5 ps time scale, a shock-induced transition to a glass-like state occurs with a concomitant increase of structural relaxation times by several orders of magnitude.

13.
J Chem Phys ; 139(7): 074503, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23968098

RESUMEN

Bond stretching and three-center angle bending potentials have been developed to extend an existing rigid-bond 1,3,5-triamino-2,4,6-trinitrobenzene molecular dynamics force field [D. Bedrov, O. Borodin, G. D. Smith, T. D. Sewell, D. M. Dattelbaum, and L. L. Stevens, J. Chem. Phys. 131, 224703 (2009)] for simulations requiring fully flexible molecules. The potentials were fit to experimental vibrational spectra and electronic structure predictions of vibrational normal modes using a combination of zero kelvin eigenmode analysis for the isolated molecule and power spectra for the isolated molecule and crystal. A reverse non-equilibrium molecular dynamics method [F. Müller-Plathe, J. Chem. Phys. 106, 6082 (1997)] was used to obtain the room temperature, atmospheric pressure thermal conductivity along three directions in a well-defined, non-orthogonal basis. The thermal conductivity was found to be significantly anisotropic with values 1.13 ± 0.07, 1.07 ± 0.07, and 0.65 ± 0.03 W m(-1) K(-1) for directions nominally parallel to the a, b, and c lattice vectors, respectively.


Asunto(s)
Simulación de Dinámica Molecular , Teoría Cuántica , Trinitrobencenos/química , Anisotropía , Cristalización , Conductividad Térmica
14.
J Chem Phys ; 139(4): 044108, 2013 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-23901961

RESUMEN

Terahertz infrared absorption spectra of the α and γ polymorphs of 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) were predicted using two different theoretical approaches based on molecular dynamics simulations. The thermodynamic conditions studied were T = 298 K and hydrostatic pressures P = 0.0, 1.0, and 2.0 GPa for α-RDX and P = 3.0, 5.2, and 7.0 GPa for γ-RDX. The spectra obtained using the two methods are similar but not identical. In the case of α-RDX for pressure P = 0.0 GPa both spectra agree reasonably well with experimental data. The predicted spectra for α-RDX exhibit red-shifting (mode softening) of the main absorption peak with increasing pressure while for γ-RDX the spectra exhibit overall blue-shifting with increasing pressure.

15.
J Chem Phys ; 138(8): 084512, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23464165

RESUMEN

Molecular dynamics simulations of shocked (100)-oriented crystalline nitromethane were carried out to determine the rates of relaxation behind the shock wave. The forces were described by the fully flexible non-reactive Sorescu-Rice-Thompson force field [D. C. Sorescu, B. M. Rice, and D. L. Thompson, J. Phys. Chem. B 104, 8406 (2000)]. The time scales for local and overall thermal equilibration in the shocked crystal were determined. The molecular center-of-mass and atomic kinetic energy distributions rapidly reach substantially different local temperatures. Several picoseconds are required for the two distributions to converge, corresponding to establishment of thermal equilibrium in the shocked crystal. The decrease of the molecular center-of-mass temperature and the increase of the atomic temperature behind the shock front exhibit essentially exponential dependence on time. Analysis of covalent bond distance distributions ahead of, immediately behind, and well behind the shock front showed that the effective bond stretching potentials are essentially harmonic. Effective force constants for the C-N, C-H, and N-O bonds immediately behind the shock front are larger by factors of 1.6, 2.5, and 2.0, respectively, than in the unshocked crystal; and by factors of 1.2, 2.2, and 1.7, respectively, compared to material sufficiently far behind the shock front to be essentially at thermal equilibrium.

16.
Sci Adv ; 9(29): eadh8839, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37478175

RESUMEN

Using a citizen science approach, we identify a country-wide exposure to aerosolized spores of a human fungal pathogen, Aspergillus fumigatus, that has acquired resistance to the agricultural fungicide tebuconazole and first-line azole clinical antifungal drugs. Genomic analysis shows no distinction between resistant genotypes found in the environment and in patients, indicating that at least 40% of azole-resistant A. fumigatus infections are acquired from environmental exposures. Hotspots and coldspots of aerosolized azole-resistant spores were not stable between seasonal sampling periods. This suggests a high degree of atmospheric mixing resulting in an estimated per capita cumulative annual exposure of 21 days (±2.6). Because of the ubiquity of this measured exposure, it is imperative that we determine sources of azole-resistant A. fumigatus to reduce treatment failure in patients with aspergillosis.


Asunto(s)
Aspergilosis , Ciencia Ciudadana , Humanos , Aspergillus fumigatus/genética , Farmacorresistencia Fúngica/genética , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Antifúngicos/farmacología , Azoles/farmacología
17.
J Chem Phys ; 136(3): 034501, 2012 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-22280762

RESUMEN

Molecular dynamics simulations of supported shock waves (shock pressure P(s) ∼ 15 GPa) propagating along the [110], [011], [101], and [111] directions in crystalline nitromethane initially at T = 200 K were performed using the nonreactive Sorescu-Rice-Thompson force field [D. C. Sorescu, B. M. Rice, and D. L. Thompson, J. Phys. Chem. B 104, 8406 (2000)]. These simulations, combined with those from a preceding study of shocks propagating along [100], [010], and [001] directions in nitromethane for similar conditions of temperature and shock pressure [L. He, T. D. Sewell, and D. L. Thompson, J. Chem. Phys. 134, 124506 (2011)], have been used to study the post-shock relaxation phenomena. Shocks along [010] and [101] lead to a crystal-crystal structure transformation. Shocks propagating along [011], [110], [111], [100], and [001] exhibit plane-specific disordering, which was characterized by calculating as functions of time the 1D mean square displacement (MSD), 2D radial distribution function (RDF), and 2D orientation order parameter P(2)(θ) in orthogonal planes mutually perpendicular to the shock plane; and by calculating as functions of distance behind the shock front the Cartesian components of intermolecular, intramolecular, and total kinetic energies. The 2D RDF results show that the structural disordering for shocks along [100], [110], and [111] is strongly plane-specific; whereas for shocks along [001] and [011], the loss of crystal structural order is almost equivalent in the orthogonal planes perpendicular to the shock plane. Based on the entire set of simulations, there is a trend for the most extensive disordering to occur in the (010) and (110) planes, less extensive disordering to occur in the (100) plane, and essentially no disordering to occur in the (001) plane. The 2D P(2)(θ) and 1D MSD profiles show, respectively, that the orientational and translational disordering is plane-specific, which results in the plane-specific structural disordering observed in the 2D RDF. By contrast, the kinetic energy partitioning and redistribution do not exhibit plane specificity, as shown by the similarity of spatial profiles of the Cartesian components of the intermolecular, intramolecular, and total kinetic energies in orthogonal planes perpendicular to the shock plane.


Asunto(s)
Metano/análogos & derivados , Simulación de Dinámica Molecular , Nitroparafinas/química , Cristalización , Cinética , Metano/química
18.
Nat Microbiol ; 7(5): 663-674, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35469019

RESUMEN

Infections caused by the fungal pathogen Aspergillus fumigatus are increasingly resistant to first-line azole antifungal drugs. However, despite its clinical importance, little is known about how susceptible patients acquire infection from drug-resistant genotypes in the environment. Here, we present a population genomic analysis of 218 A. fumigatus isolates from across the UK and Ireland (comprising 153 clinical isolates from 143 patients and 65 environmental isolates). First, phylogenomic analysis shows strong genetic structuring into two clades (A and B) with little interclade recombination and the majority of environmental azole resistance found within clade A. Second, we show occurrences where azole-resistant isolates of near-identical genotypes were obtained from both environmental and clinical sources, indicating with high confidence the infection of patients with resistant isolates transmitted from the environment. Third, genome-wide scans identified selective sweeps across multiple regions indicating a polygenic basis to the trait in some genetic backgrounds. These signatures of positive selection are seen for loci containing the canonical genes encoding fungicide resistance in the ergosterol biosynthetic pathway, while other regions under selection have no defined function. Lastly, pan-genome analysis identified genes linked to azole resistance and previously unknown resistance mechanisms. Understanding the environmental drivers and genetic basis of evolving fungal drug resistance needs urgent attention, especially in light of increasing numbers of patients with severe viral respiratory tract infections who are susceptible to opportunistic fungal superinfections.


Asunto(s)
Antiinfecciosos , Aspergillus fumigatus , Aspergillus fumigatus/genética , Azoles/farmacología , Farmacorresistencia Fúngica/genética , Humanos , Metagenómica , Pruebas de Sensibilidad Microbiana
19.
J Chem Phys ; 134(24): 244502, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21721638

RESUMEN

Terahertz (THz) active normal-mode relaxation in crystalline pentaerythritol tetranitrate (PETN) was studied using classical molecular dynamics simulations for energy and density conditions corresponding to room temperature and atmospheric pressure. Two modifications to the fully flexible non-reactive force field due to Borodin et al. [J. Phys. Chem. B 112, 734 (2008)] used in a previous study of THz-active normal-mode relaxation in PETN [J. Chem. Phys. 134, 014513 (2011)] were considered to assess the sensitivity of the earlier predictions to details of the covalent bond-stretching terms in the force field. In the first modification the harmonic bond-stretching potential was replaced with the Morse potential to study the effect of bond anharmonicity on the THz-region mode relaxation. In the second modification the C-H and nitro-group N-O bond lengths were constrained to constant values to mimic lower quantum occupation numbers for those high-frequency modes. The results for relaxation times of the initially excited modes were found to be insensitive to either force-field modification. Overall time scales for energy transfer to other modes in the system were essentially unaffected by the force-field modifications, whereas the detailed pathways by which the energy transfer occurs are more complicated for the Morse potential than for the harmonic-bond and fixed-bond cases. Terahertz infrared absorption spectra constructed using calculated normal-mode frequencies, transition dipoles, and relaxation times for THz-active modes were compared to the spectra obtained from the Fourier transform of the dipole-dipole time autocorrelation function (DDACF). Results from the two approaches are in near agreement with each other and with experimental results in terms of main peak positions. Both theoretical methods yield narrower peaks than observed experimentally and in addition predict a weaker peak at ω ∼ 50 cm(-1) that is weak or absent experimentally. Peaks obtained using the DDACF approach are broader than those obtained from the normal-mode relaxation method.

20.
J Chem Phys ; 134(1): 014513, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21219013

RESUMEN

Normal vibrational modes for a three-dimensional defect-free crystal of the high explosive pentaerythritol tetranitrate were obtained in the framework of classical mechanics using a previously published unreactive potential-energy surface [J. Phys. Chem. B 112, 734 (2008)]. Using these results the vibrational density of states was obtained for the entire vibrational frequency range. Relaxation of selectively excited terahertz-active modes was studied using isochoric-isoergic (NVE) molecular dynamics simulations for energy and density conditions corresponding to room temperature and atmospheric pressure. Dependence of the relaxation time on the initial modal excitation was considered for five excitation energies between 10 and 500 kT and shown to be relatively weak. The terahertz absorption spectrum was constructed directly using linewidths obtained from the relaxation times of the excited modes for the case of 10 kT excitation. The spectrum shows reasonably good agreement with experimental results. Dynamics of redistribution of the excited mode energy among the other normal modes was also studied. The results indicate that, for the four terahertz-active initially excited modes considered, there is a small subset of zero wave vector (k = 0) modes that preferentially absorb the energy on a few-picosecond time scale. The majority of the excitation energy, however, is transferred nonspecifically to the bath modes of the system.


Asunto(s)
Tetranitrato de Pentaeritritol/química , Modelos Moleculares , Simulación de Dinámica Molecular , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA