Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37762406

RESUMEN

The current study describes the encapsulation of hydroxychloroquine, widely used in traditional medicine due to its diverse pharmacological and medicinal uses, in chitosan nanoparticles (CNPs). This work aims to combine the HCQ drug with CS NPs to generate a novel nanocomposite with improved characteristics and bioavailability. HCQ@CS NPs are roughly shaped like roadways and have a smooth surface with an average size of 159.3 ± 7.1 nm, a PDI of 0.224 ± 0.101, and a zeta potential of +46.6 ± 0.8 mV. To aid in the development of pharmaceutical systems for use in cancer therapy, the binding mechanism and affinity of the interaction between HCQ and HCQ@CS NPs and BSA were examined using stopped-flow and other spectroscopic approaches, supplemented by molecular docking analysis. HCQ and HCQ@CS NPs binding with BSA is driven by a ground-state complex formation that may be accompanied by a non-radiative energy transfer process, and binding constants indicate that HCQ@CS NPs-BSA was more stable than HCQ-BSA. The stopped-flow analysis demonstrated that, in addition to increasing BSA affinity, the nanoformulation HCQ@CS NPS changes the binding process and may open new routes for interaction. Docking experiments verified the development of the HCQ-BSA complex, with HCQ binding to site I on the BSA structure, primarily with the amino acids, Thr 578, Gln 579, Gln 525, Tyr 400, and Asn 404. Furthermore, the nanoformulation HCQ@CS NPS not only increased cytotoxicity against the A549 lung cancer cell line (IC50 = 28.57 ± 1.72 µg/mL) compared to HCQ (102.21 ± 0.67 µg/mL), but also exhibited higher antibacterial activity against both Gram-positive and Gram-negative bacteria when compared to HCQ and chloramphenicol, which is in agreement with the binding constants. The nanoformulation developed in this study may offer a viable therapy option for A549 lung cancer.


Asunto(s)
Quitosano , Neoplasias Pulmonares , Nanopartículas , Humanos , Simulación del Acoplamiento Molecular , Quitosano/química , Hidroxicloroquina/farmacología , Liberación de Fármacos , Antibacterianos , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/metabolismo , Nanopartículas/química , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo
2.
Molecules ; 28(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37175361

RESUMEN

In this study, poly(AA-co-ACMO) and polyurethane-based nanofibers were prepared in a ratio of 1:1 (NF11) and 2:1 (NF21) as antimicrobial carriers for chronic wound management. Different techniques were used to characterize the nanofibers, and poly(AA-co-ACMO) was mostly found on the surface of PU. With an increase in poly(AA-co-ACMO) dose from 0 (PU) and 1:1 (NF11) to 2:1 (NF21) in the casting solution, the contact angle (CA) was reduced from 137 and 95 to 24, respectively, and hydrophilicity was significantly increased. As most medications inhibit biological processes by binding to a specific protein, in vitro protein binding was investigated mechanistically using a stopped-flow technique. Both NF11 and NF21 bind to BSA via two reversible steps: a fast second-order binding followed by a slow first-order one. The overall parameters for NF11 (Ka = 1.1 × 104 M-1, Kd = 89.0 × 10-6, ΔG0 = -23.1 kJ mol-1) and NF21 (Ka = 189.0 × 104 M-1, Kd = 5.3 × 10-6 M, ΔG0 = -27.5 kJ mol-1) were determined and showed that the affinity for BSA is approximately (NF11)/(NF21) = 1/180. This indicates that NF21 has much higher BSA affinity than NF11, although BSA interacts with NF11 much faster. NF21 with higher hydrophilicity showed effective antibacterial properties compared to NF11, in agreement with kinetic data. The study provided an approach to manage chronic wounds and treating protein-containing wastewater.


Asunto(s)
Nanofibras , Poliuretanos , Poliuretanos/química , Nanofibras/química , Polímeros/química , Antibacterianos/farmacología , Interacciones Hidrofóbicas e Hidrofílicas
3.
Molecules ; 28(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37049792

RESUMEN

This work aimed to evaluate in vitro DNA binding mechanistically of cationic nitrosyl ruthenium complex [RuNOTSP]+ and its ligand (TSPH2) in detail, correlate the findings with cleavage activity, and draw conclusions about the impact of the metal center. Theoretical studies were performed for [RuNOTSP]+, TSPH2, and its anion TSP-2 using DFT/B3LYP theory to calculate optimized energy, binding energy, and chemical reactivity. Since nearly all medications function by attaching to a particular protein or DNA, the in vitro calf thymus DNA (ctDNA) binding studies of [RuNOTSP]+ and TSPH2 with ctDNA were examined mechanistically using a variety of biophysical techniques. Fluorescence experiments showed that both compounds effectively bind to ctDNA through intercalative/electrostatic interactions via the DNA helix's phosphate backbone. The intrinsic binding constants (Kb), (2.4 ± 0.2) × 105 M-1 ([RuNOTSP]+) and (1.9 ± 0.3) × 105 M-1 (TSPH2), as well as the enhancement dynamic constants (KD), (3.3 ± 0.3) × 104 M-1 ([RuNOTSP]+) and (2.6 ± 0.2) × 104 M-1 (TSPH2), reveal that [RuNOTSP]+ has a greater binding propensity for DNA compared to TSPH2. Stopped-flow investigations showed that both [RuNOTSP]+ and TSPH2 bind through two reversible steps: a fast second-order binding, followed by a slow first-order isomerization reaction via a static quenching mechanism. For the first and second steps of [RuNOTSP]+ and TSPH2, the detailed binding parameters were established. The total binding constants for [RuNOTSP]+ (Ka = 43.7 M-1, Kd = 2.3 × 10-2 M-1, ΔG0 = -36.6 kJ mol-1) and TSPH2 (Ka = 15.1 M-1, Kd = 66 × 10-2 M, ΔG0 = -19 kJ mol-1) revealed that the relative reactivity is approximately ([RuNOTSP]+)/(TSPH2) = 3/1. The significantly negative ΔG0 values are consistent with a spontaneous binding reaction to both [RuNOTSP]+ and TSPH2, with the former being very favorable. The findings showed that the Ru(II) center had an effect on the reaction rate but not on the mechanism and that the cationic [RuNOTSP]+ was a more highly effective DNA binder than the ligand TSPH2 via strong electrostatic interaction with the phosphate end of DNA. Because of its higher DNA binding affinity, cationic [RuNOTSP]+ demonstrated higher cleavage efficiency towards the minor groove of pBR322 DNA via the hydrolytic pathway than TSPH2, revealing the synergy effect of TSPH2 in the form of the complex. Furthermore, the mode of interaction of both compounds with ctDNA has also been supported by molecular docking.


Asunto(s)
Complejos de Coordinación , Rutenio , Simulación del Acoplamiento Molecular , Rutenio/química , Ligandos , Óxido Nítrico , ADN/química , Complejos de Coordinación/química , División del ADN
4.
Molecules ; 27(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35684479

RESUMEN

Two zinc(II) complexes, DBZ and DBZH4, that have (ZnN3S2) cores and differ in the bridging mode of the ligating backbone, effectively bind to BSA. The binding affinity varies as DBZ > DBZH4 and depends on the ligand structure. At low concentrations, both complexes exhibit dynamic quenching, whereas at higher concentrations they exhibit mixed (static and dynamic) quenching. The energy transfer mechanism from the BSA singlet excited state to DBZ and DBZH4, is highly likely according to steady-state fluorescence and time-correlated singlet photon counting. Molecular docking was used to support the mode of interaction of the complexes with BSA and showed that DBZ had more energy for binding. Furthermore, antibacterial testing revealed that both complexes were active but to a lesser extent than chloramphenicol. In comparison to DBZH4, DBZ has higher antibacterial activity, which is consistent with the binding constants, molecular docking, and particle size of adducts. These findings may have an impact on biomedicine.


Asunto(s)
Albúmina Sérica Bovina , Zinc , Antibacterianos/farmacología , Sitios de Unión , Biomimética , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica , Albúmina Sérica Bovina/química , Espectrometría de Fluorescencia , Zinc/química
5.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681878

RESUMEN

Titanium (IV)-dithiophenolate complex chitosan nanocomposites (DBT-CSNPs) are featured by their antibacterial activities, cytotoxicity, and capacity to bind with DNA helixes. In this study, their therapeutic effects against rat liver damage induced by carbon tetrachloride (CCl4) and their anti-proliferative activity against human liver cancer (HepG2) cell lines were determined. Results of treatment were compared with cisplatin treatment. Markers of apoptosis, oxidative stress, liver functions, and liver histopathology were determined. The results showed that DBT-CSNPs and DBT treatments abolished liver damage induced by CCl4 and improved liver architecture and functions. DNA fragmentation, Bax, and caspase-8 were reduced, but Bcl-2 and the Bcl-2/Bax ratios were increased. However, there was a non-significant change in the oxidative stress markers. DBT-CSNPs and DBT inhibited the proliferation of HepG2 cells by arresting cells in the G2/M phase and inducing cell death. DBT-CSNPs were more efficient than DBT. Low doses of DBT and DBT-CSNPs applied to healthy rats for 14 days had no adverse effect. DBT and DBT-CSNP treatment gave preferable results than the treatment with cisplatin. In conclusion, DBT-CSNPs and DBT have anti-apoptotic activities against liver injuries and have anti-neoplastic impacts. DBT-CSNPs are more efficient. Both compounds can be used in pharmacological fields.


Asunto(s)
Antineoplásicos/administración & dosificación , Carcinoma Hepatocelular/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Quitosano/química , Nanocompuestos/administración & dosificación , Fenoles/química , Compuestos de Sulfhidrilo/química , Titanio/química , Animales , Antineoplásicos/química , Apoptosis , Tetracloruro de Carbono/toxicidad , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Nanocompuestos/química , Estrés Oxidativo , Ratas , Ratas Sprague-Dawley
6.
Photochem Photobiol Sci ; 17(8): 1098-1107, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-29993078

RESUMEN

Electronic interactions between the cationic N,N'-bis(2(trimethylammonium iodide) ethylene)perylene-3,4,9,10-tetracarboxyldiimide (TAIPDI) with two electron donors, namely, pyrene (Py) and 1-pyrenesulfonic acid sodium salt (PySA), have been investigated. The spectroscopic studies showed the formation of the supramolecular conjugate between TAIPDI and PySA via ionic interaction, but not with Py. Density functional theory (DFT) combined with a natural energy decomposition analysis (NEDA) technique showed an S-like structure of the supramolecular conjugate TAIPDI-PySA via an ionic interaction. The formation constant of the TAIPDI-PySA supramolecular conjugate was determined to be 3.0 × 104 M-1, suggesting a fairly stable complex formation. The excited state events were monitored by both steady state and time-resolved emission techniques. Upon excitation, the quenching pathways via the singlet-excited states of TAIPDI and PySA involved the intramolecular electron transfer from the electron donating PySA to the electron accepting TAIPDI with a rate constant of 1.10 × 1011 s-1 and a quantum yield of 0.99. The thermodynamic parameters of the supramolecular TAIPDI-PySA conjugate have been determined using the stopped-flow technique.

7.
Photochem Photobiol Sci ; 16(6): 861-869, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28379265

RESUMEN

A perylene derivative, namely N,N'-bis(2(trimethylammonium iodide)ethylene)perylene-3,4,9,10-tetracarboxyldiimide (TAIPDI) forms nanoscale columnar stacks in water that have been characterized by using optical absorption and emission measurements, dynamic light scattering (DLS), and transmission electron microscopy (TEM). This behaviour was compared with that of unstacked TAIPDI in methanol. Assembly formation between the one-dimensional TAIPDI stacks and zinc phthalocyanine tetrasulphonic groups (ZnPcS4) via strong π-π and ionic interactions has been described in an aqueous medium. The formation constant of the supramolecular dyad has been determined as 2.94 × 104 M-1 from both the absorption and fluorescence measurements. Upon addition of ZnPcS4, the fluorescence quenching of the singlet-excited state of TAIPDI was observed because of the electron transfer process from ZnPcS4 to TAIPDI via the singlet-excited states of ZnPcS4 and TAIPDI entities. The electrochemical studies supported the electron transfer pathways via the singlet states of ZnPcS4 and TAIPDI. The thermodynamic parameters of the supramolecular complex have been determined from stopped-flow measurements. The interaction between ZnPcS4 and TAIPDI occurs in two steps, where the rate constant of the second step with TAIPDI (207 ± 8 M-1 s-1) is much slower than the first one (3515 ± 101 M-1 s-1). Activation parameters for the complex formation (ΔH# = 76 ± 11 kJ mol-1 and ΔS# = 83 ± 37 J K-1 mol-1, and ΔH# = 221 ± 15 kJ mol-1 and ΔS# = 540 ± 50 J K-1 mol-1) were determined from variable temperature studies for the first and second steps, respectively. The significantly positive ΔS# values found for both steps of the interaction reactions are consistent with a dissociative mechanism.

8.
Carbohydr Res ; 543: 109207, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39018698

RESUMEN

Folic acid receptor-targeted drug delivery system is a promising candidate for tumor-targeted delivery because its elevated expression specifically on tumor cells enables the selective delivery of cytotoxic cargo to cancerous tissue, thereby minimizing toxic side effects and increasing the therapeutic index. Pyridine bisfolate-chitosan (PyBFA@CS NPs) and folate-chitosan nanocomposite (FA@CS NPs) were synthesized with suitable particle size (256.0 ± 15.0 and 161.0 ± 5.0 nm), high stability (ζ = -27.0 ± 0.1 and -30.0 ± 0.2 mV), respectively, and satisfactory biocompatibility to target cells expressing folate receptors and try to answer the question: Is the metal center always important for activity? Since almost all pharmaceuticals work by binding to specific proteins or DNA, the in vitro binding of human serum albumin (HSA) to PyBFA@CS NPs and FA@CS NPs has been investigated and compared with PyBFA. Strong affinity to HSA is shown by quenching and binding constants in the range of 105 and 104 M-1, respectively with PyBFA@CS NPs showing the strongest. The compounds-HSA kinetic stability, affinity, and association constants were investigated using a stopped-flow method. The findings showed that all formulations bind by a static quenching mechanism that consists of two reversible steps: rapid second-order binding and a more slowly first-order isomerization reaction. The overall coordination affinity of HSA to PyBFA@CS NPs (6.6 × 106 M-1), PyBFA (4.4 × 106 M-1), and FA@CS NPs (1.3 × 106 M-1) was measured and The relative reactivity is roughly (PyBFA@CS NPs)/(PyBFA)/(FA@CS NPs) = 5/3/1. Additionally, in vitro cytotoxicity revealed that, consistent with the binding constants and coordination affinity, active-targeting formulations greatly inhibited FR-positive MCF-7 cells in compared to FRs-negative A549 cells in the following trend: PyBFA@CS NPs > PyBFA > FA@CS NPs. Furthermore, in vitro drug release of PyBFA@CS NPs was found to be stable in PBS at pH 7.4, however, the in pH 5.4 and in pH 5.4 containing 10 mM glutathione (GSH) (mimicking the tumor microenvironment) reached 43 % and 73 %, respectively indicating that the PyBFA@CS NPs system is sensitive to GSH. Folate-modified nanoparticles, PyBFA@CS NPs, are a promising therapeutic for MCF-7 therapy because they not only showed a greater affinity for HSA, but also showed higher cleavage efficiency toward the minor groove of pBR322 DNA via the hydrolytic way, as well as effective antibacterial activity that avoids the usage of extra antibiotics.‬‬‬‬‬‬‬‬‬‬‬‬ ‬‬‬‬‬‬‬‬‬‬‬‬‬‬.

9.
Environ Sci Pollut Res Int ; 29(6): 8487-8502, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34487322

RESUMEN

Our previous study showed that dithiophenolate (DTP) and its chitosan nanoparticles (DTP-CSNPs) have abilities to bind with DNA helixes. So in this study, their lethal doses (LD50) and therapeutic roles against rat liver injuries induced by carbon tetrachloride (CCl4) were evaluated. The study focused on the determination of the markers of oxidative stress (OS) and apoptosis and compare the results with those of cisplatin treatment. The results revealed that LD50 values of DTP and DTP-CSNPs are 2187.5 and 1462.5 mg/kg, respectively. Treatment with DPT and DPT-CSNPs after CCl4 administration reduced liver injuries, induced by CCl4, and improved liver functions and architecture through the reduction of OS and apoptosis. Where the oxidant marker was decreased with elevations of antioxidant markers. Also, there was an elevation in Bcl-2 value, with decreases in caspase-8, Bax, and Bax/Bcl-2 ratio. DPT-CSNPs treatment gave preferable results than those treated with DPT. Moreover, DTP and DPT-CSNPs treatment gave better results than cisplatin treatment. The administration of healthy rats with low doses of DTP and DTP-CSNPs for 14 days had no effect. Otherwise, the study on HepG2 cell line showed that DTP and DPT-CSNPs inhibited cell growth by arresting cells in the G2/M phase and inducing cell death. In conclusion, DTP and DTP-CSNPs have antiapoptotic and anti-oxidative stress toward hepatotoxicity induced by CCl4. Moreover, DTP and DTP-CSNPs have anticancer activity against the HepG2 cell line. Generally, DTP-CSNPs are more effective than DTP. So, they can be used in the pharmacological fields, especially DTP-CSNPs.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Quitosano , Nanocompuestos , Animales , Antioxidantes , Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Ratas
10.
Biomimetics (Basel) ; 7(4)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36412701

RESUMEN

Reaction of bis(2-picolyl)amine (BPA) with Ni(II) salt yielded [(BPA)NiCl2(H2O)] (NiBPA). The Ni(II) in NiBPA bound to a BPA ligand, two chloride, and one aqua ligands. Because most medications inhibit biological processes by binding to a specific protein, the stopped-flow technique was used to investigate DNA/protein binding in-vitro, and a mechanism was proposed. NiBPA binds to DNA/protein more strongly than BPA via a static quenching mechanism. Using the stopped-flow technique, a mechanism was proposed. BSA interacts with BPA via a fast reversible step followed by a slow irreversible step, whereas NiBPA interacts via two reversible steps. DNA, on the other hand, binds to BPA and NiBPA via the same mechanism through two reversible steps. Although BSA interacts with NiBPA much faster, NiBPA has a much higher affinity for DNA (2077 M) than BSA (30.3 M). Compared to NiBPA, BPA was found to form a more stable BSA complex. When BPA and NiBPA bind to DNA, the Ni(II) center was found to influence the rate but not the mechanism, whereas, for BSA, the Ni(II) center was found to change both the mechanism and the rate. Additionally, NiBPA exhibited significant cytotoxicity and antibacterial activity, which is consistent with the binding constants but not the kinetic stability. This shows that in our situation, biological activity is significantly more influenced by binding constants than by kinetic stability. Due to its selectivity and cytotoxic activity, complex NiBPA is anticipated to be used in medicine.

11.
J Biomol Struct Dyn ; 40(21): 10677-10695, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34435546

RESUMEN

Four mononuclear penta coordinated copper(II) chelates, [CuLnBr2] nH2O, containing the tridentate neutral ligands, pyridine-2,6-diimine (Ln), were prepared via the template technique. Analytical and several physicochemical methods have been used to characterize the prepared metal chelates. Square-pyramidal stereochemistry was described to the current copper(II) complexes. DFT technique has been applied to optimize the structure of the running diimines and their corresponding copper-based compounds. Ligand substitution study performed to link the catalytic potency of the candidate oxidase mimics and their lability characters. Spectral investigations reveal that nature of substituents of the chelated ligands effectively tuning the Lewis acidity of copper(II) centers. Biomimetics of redox proteins specifically containing copper were examined towards the aerobic oxidation of polyphenol. Kinetic studies with the stopped-follow technique showed a close association between the Lewis acidity of the copper(II) nuclei of the prepared chelates and their oxidase-like activity. The catalytic activity of the natural enzyme (catechol oxidase from sweet potatoes) measured and compared with that for the present CuII chelates. The thermodynamic parameter drive force (ΔG° or λ) of the performed oxidation processes was determined from the values of redox potential of the chemical species involved in these catalytic reactions. The proposed catalytic reactions pathways have been discussed based on the outcomes of the kinetic investigations.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Complejos de Coordinación , Cobre , Cobre/química , Ligandos , Cinética , Catecol Oxidasa/química , Catecol Oxidasa/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Piridinas , Complejos de Coordinación/química , Cristalografía por Rayos X
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 241: 118609, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-32619970

RESUMEN

Here we report the photophysical and sensing properties of the aqueous solution of meso-tetra(N-methyl-4-pyridyl)porphyrin toluene sulfonate (TMPP) for simultaneous detection of toxic metal ions in an aqueous medium by using different physiochemical methods such as UV-vis absorption, steady state and time resolved fluorescence, stopped flow, and cyclic voltammetry. The steady-state absorption and fluorescence spectra in organic solvents (EtOH, DMSO, DMF, MeOH and ACN) showed the formation of monomer form (λmaxabs = 426 nm and λmaxflu = 654 and 715 nm). In THF and water, different spectral features were recorded suggested the formation of aggregated forms in both solvents. The formation of aggregated form in water was confirmed by recording the remarkable fluorescence quenching of the singlet excited TMPP with increasing the concentrations of TMPP. In cationic micelles (CTAB), both the absorption and fluorescence spectra were significantly decreased with increasing the concentrations of CTAB with a break at CMC value at 6.0 × 10-5 M. In an anionic micelle (SDS), the CMC value was found to be 1.0 × 10-4 M. Upon interacting with different metal ions, the absorption and fluorescence spectra of TMPP showed different features depending on the metal ions. While the optical studies of TMPP showed no significant interaction in the presence of Mn+2, Co+2, Ba2+, and Ni+2, TMPP showed that it can function as a single optical chemical sensor for the toxic metal ions in water, particularly Hg+2, Pb+2, Cu+2, and Cd+2 ions.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 228: 117811, 2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-31813731

RESUMEN

The interaction of bovine serum albumin (BSA) with seven-coordination iron (II) complex containing sulfur-based macrocyclic ligand was investigated by means of UV/vis absorption spectroscopy and fluorescence quenching technique. The accurate fluorescence spectra are obtained by using Inner filter effect (IFE) correction. The apparent association constant, kapp, the number of binding sites, n, and the apparent binding constant KSV were found to be 0.95 × 103 M-1, 0.96, and 6.13 × 104 M-1, respectively. It found that BSA molecules are adsorbed on the surface of iron (II) complex by electrostatic interaction. The quenching mechanism is discussed involving energy transfer from BSA to iron (II) complex.


Asunto(s)
Ligandos , Albúmina Sérica Bovina/química , Espectrofotometría/métodos , Animales , Bovinos , Simulación por Computador , Análisis Mutacional de ADN , Enlace de Hidrógeno , Imagenología Tridimensional , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , Dominios Proteicos , Transducción de Señal , Termodinámica
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 186: 132-139, 2017 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-28641143

RESUMEN

Self-assembly of perylene derivative such as N,N'-bis(2(trimethylammonium iodide) ethylene)perylene-3,4,9,10-tetracarboxyldiimide (TAIPDI) can produce one-dimensional form (1D) in an aqueous media. The ability of one-dimensional TAIPDI to form light harvesting complex with water-soluble zinc porphyrin (ZnTPPS4) via the π-π and electrostatic interactions has been described. Owing to electronic interactions between the π-systems, the complex formation is accompanied by pronounced absorption spectral changes in the UV/Vis absorption bands. The formation constant of the ZnTPPS4-TAIPDI complex has been determined as 2.60×104M-1 suggests a moderately stable complex. The steady-state fluorescence measurements exhibited fluorescence quenching of both the singlet TAIPDI and ZnTPPS4 because of the electron transfer process from the electron-donating ZnTPPS4 to the electron-accepting TAIPDI. Based on the picosecond time-resolved fluorescence, the rate and quantum yield of the electron transfer were found to be 2.47×1010s-1 and 0.99, respectively, indicating fast and efficient electron transfer. The thermodynamic parameters of the complex formation have been determined from the stopped-flow measurements. The interaction between ZnTPPS4 and TAIPDI occurs in two steps, a fast and reversible step followed by a slow and irreversible one. The activation parameters for the complex formation (ΔH#=22±5kJmol-1 and ΔS#=-123±18JK-1mol-1), (ΔH#=133±4kJmol-1 and ΔS#=167±13Jmol-1K-1) were determined from variable temperature studies for the "on" and the "off" of the first step and ΔS#=246±37.89Jmol-1K-1 and ΔH#=130±11kJmol-1 for the second step. The negative and positive ΔS# values found for the interaction reactions are consistent with an associative interaction for the first step followed by dissociative mechanism for both the "off" and the second step.

15.
Dalton Trans ; 44(31): 14110-21, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26172408

RESUMEN

A series of copper(ii) complexes, viz. [Tp(MeMe)Cu(Cl)(H2O)] (), [Tp(MeMe)Cu(OAc)(H2O)] (), [Tp(MeMe)Cu(NO3)] () and [Tp(MeMe)Cu(ClO4)] () containing tris(3,5-dimethylpyrazolyl)borate (KTp(MeMe)), have been synthesized and fully characterized. The substitution reaction of with thiourea was studied under pseudo-first-order conditions as a function of concentration, temperature and pressure in methanol and acetonitrile as solvents. Two reaction steps that both depended on the nucleophile concentration were observed for both solvents. Substitution of coordinated methanol is about 40 times faster than the substitution of chloride. In acetonitrile, the rate constant for the displacement of coordinated acetonitrile was more than 20 times faster than the substitution of chloride. The reported activation parameters indicate that both reaction steps follow a dissociative mechanism in both solvents. On going from methanol to acetonitrile, the rate constant for the displacement of the solvent becomes more than 200 times faster due to the more labile acetonitrile, but the substitution mechanism remained to have a dissociative character. The antioxidant activities of were evaluated for superoxide dismutase (SOD), glutathione-s-transferase (GST0 and glutathione reduced (GSH-Rd) activity. and were found to show (p < 0.05) the highest antioxidant activity in comparison to and , which can be ascribed to the geometric configuration as well as the nature of the co-ligand. showed catechol oxidase activity with turnover numbers of 20 min(-1) and a coordination affinity for 3,5-DTBC of K1, = 31 mM(-1). K1 is rather large and seems to be typical for faster biomimetic models, and also for the enzyme itself (25 mM(-1)). The reaction rate depended linearly on the complex concentration, indicating a first-order dependence on the catalyst concentration.


Asunto(s)
Antioxidantes/metabolismo , Materiales Biomiméticos/química , Boratos/química , Cobre/química , Compuestos Organometálicos/química , Oxidorreductasas/metabolismo , Pirazoles/química , Catálisis , Catecol Oxidasa/metabolismo , Cinética , Ligandos , Oxidación-Reducción , Análisis Espectral , Termodinámica
16.
Dalton Trans ; 40(1): 287-94, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21085728

RESUMEN

In order to provide insight into the reaction pathways of nitrogen oxide redox species with [Fe-S] models that may parallel those existing in biology, the reactivity of the iron-sulfur species, {[Fe(II)(S(4)NEt(2)N)]}(2) (1) and [Fe(II)(CH(3)CN)(S(4)NEt(2)N)] (2), where (S(4)NEt(2)N)(2-) = 2,6-bis(2-mercaptophenylthiomethyl)-4-diethylaminopyridine(2-), towards NO(+) (nitrosation) has been studied mechanistically in acetonitrile and compared with the corresponding reactions with NO (nitrosylation). For the nitrosation of 1, the reaction takes place in two steps that correspond to the nitrosation of the mononuclear (2) and dinuclear (1) complexes, respectively. For the corresponding carbonyl complex [Fe(II)(CO)(S(4)NEt(2)N)] (3), the nitrosation reaction occurs in a single step. The relative reactivity of the iron-sulfur species is approximately (1)/(2)/(3) = 1/20/10. Activation parameters for the nitrosation of 1 (ΔH(#) = 27 ± 1 kJ mol(-1), ΔS(#) = -111 ± 2 J K(-1) mol(-1), and ΔV(#) = -19 ± 2 cm(3) mol(-1)), 2 (ΔH(#) = 46 ± 2 kJ mol(-1), ΔS(#) = -22 ± 7 J K(-1) mol(-1), and ΔV(#) = -9.7 ± 0.4 cm(3) mol(-1)) and 3 (ΔH(#) = 38 ± 1 kJ mol(-1), ΔS(#) = -44 ± 4 J K(-1) mol(-1), and ΔV(#) = -7.8 ± 0.3 cm(3) mol(-1)) were determined from variable temperature and pressure studies. The significantly negative ΔS(#) and ΔV(#) values found for the nitrosation reactions are consistent with an associative mechanism. A comparative study of the reactivity of the iron-sulfur species 1 to 3 towards NO(+) and NO is presented.


Asunto(s)
Materiales Biomiméticos/química , Complejos de Coordinación/química , Proteínas Hierro-Azufre/química , Compuestos Ferrosos/química , Cinética , Estructura Molecular , Nitrosación , Espectrofotometría Ultravioleta , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA