Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
BMC Genomics ; 25(1): 658, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956486

RESUMEN

BACKGROUND: The cashmere goat industry is one of the main pillars of animal husbandry in Inner Mongolia Autonomous Region, and plays an irreplaceable role in local economic development. With the change in feeding methods and environment, the cashmere produced by Inner Mongolia cashmere goats shows a tendency of coarser, and the cashmere yield can not meet the consumption demand of people. However, the genetic basis behind these changes is not fully understood. We measured cashmere traits, including cashmere yield (CY), cashmere diameter (CD), cashmere thickness (CT), and fleece length (FL) traits for four consecutive years, and utilized Genome-wide association study of four cashmere traits in Inner Mongolia cashmere goats was carried out using new genomics tools to infer genomic regions and functional loci associated with cashmere traits and to construct haplotypes that significantly affect cashmere traits. RESULTS: We estimated the genetic parameters of cashmere traits in Inner Mongolia cashmere goats. The heritability of cashmere yield, cashmere diameter, and fleece length traits of Inner Mongolia cashmere goats were 0.229, 0.359, and 0.250, which belonged to the medium heritability traits (0.2 ~ 0.4). The cashmere thickness trait has a low heritability of 0.053. We detected 151 genome-wide significantly associated SNPs with four cashmere traits on different chromosomes, which were very close to the chromosomes of 392 genes (located within the gene or within ± 500 kb). Notch3, BMPR1B, and CCNA2 have direct functional associations with fibroblasts and follicle stem cells, which play important roles in hair follicle growth and development. Based on GO functional annotation and KEGG enrichment analysis, potential candidate genes were associated with pathways of hair follicle genesis and development (Notch, P13K-Akt, TGF-beta, Cell cycle, Wnt, MAPK). We calculated the effective allele number of the Inner Mongolia cashmere goat population to be 1.109-1.998, the dominant genotypes of most SNPs were wild-type, the polymorphic information content of 57 SNPs were low polymorphism (0 < PIC < 0.25), and the polymorphic information content of 79 SNPs were moderate polymorphism (0.25 < PIC < 0.50). We analyzed the association of SNPs with phenotypes and found that the homozygous mutant type of SNP1 and SNP3 was associated with the highest cashmere yield, the heterozygous mutant type of SNP30 was associated with the lowest cashmere thickness, the wild type of SNP76, SNP77, SNP78, SNP80, and SNP81 was associated with the highest cashmere thickness, and the wild type type of SNP137 was associated with the highest fleece length. 21 haplotype blocks and 68 haplotype combinations were constructed. Haplotypes A2A2, B2B2, C2C2, and D4D4 were associated with increased cashmere yield, haplotypes E2E2, F1F1, G5G5, and G1G5 were associated with decreased cashmere fineness, haplotypes H2H2 was associated with increased cashmere thickness, haplotypes I1I1, I1I2, J1J4, L5L3, N3N2, N3N3, O2O1, P2P2, and Q3Q3 were associated with increased cashmere length. We verified the polymorphism of 8 SNPs by KASP, and found that chr7_g.102631194A > G, chr10_g.82715068 T > C, chr1_g.124483769C > T, chr24_g.12811352C > T, chr6_g.114111249A > G, and chr6_g.115606026 T > C were significantly genotyped in verified populations (P < 0.05). CONCLUSIONS: In conclusion, the genetic effect of single SNP on phenotypes is small, and SNPs are more inclined to be inherited as a whole. By constructing haplotypes from SNPs that are significantly associated with cashmere traits, it will help to reveal the complex and potential causal variations in cashmere traits of Inner Mongolia cashmere goats. This will be a valuable resource for genomics and breeding of the cashmere goat.


Asunto(s)
Estudio de Asociación del Genoma Completo , Cabras , Haplotipos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Animales , Cabras/genética , Cabras/crecimiento & desarrollo , Fenotipo , China , Carácter Cuantitativo Heredable
2.
Funct Integr Genomics ; 22(5): 835-848, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35488101

RESUMEN

microRNA (miRNA) is a type of endogenous short-chain non-coding RNA with regulatory function found in eukaryotes, which is involved in the regulation of a variety of cellular and biological processes. However, the research on the development of cashmere goat secondary hair follicles is still relatively scarce. In this study, small RNA libraries and mRNA libraries of 45 days, 55 days, 65 days, and 75 days of fetal skin of cashmere goats were constructed, and the constructed libraries were sequenced using Illumina Hiseq4000, and the expression profiles of miRNA and mRNA in cashmere goat fetal skin were obtained. The differentially expressed miRNAs and mRNAs in six control groups were identified and the qRT-PCR experiment shows that the sequencing results are accurate. Sixty-six miRNAs related to secondary hair follicle development were screened, and used TargetScan and miRanda to predict 33 highly expressed miRNA target genes. At the same time, 664 mRNAs related to the development of secondary hair follicles were screened, and GO enrichment and KEGG pathway analysis were performed. It was found that some miRNA target genes were consistent with the screening results of mRNAs related to secondary hair follicle development and were enriched in Notch signaling pathway, TGF-ß signaling pathway. Therefore, miR-145-5p-DLL4, miR-27b-3p-DLL4, miR-30e-5p-DLL4, miR-193b-3p-TGF-ß1, miR-181b-5p-NOTCH2, and miR-103-3p-NOTCH2 regulatory network related to the development of secondary hair follicles were constructed and the results of dual-luciferase reporter gene assay indicated that there is a targeted relationship between chi-miR-30e-5p and DLL4, which will provide a basis for molecular mechanism of miRNA-mRNA in the development of the hair follicles in cashmere goats.


Asunto(s)
Cabras , MicroARNs , Animales , Perfilación de la Expresión Génica , Folículo Piloso , MicroARNs/genética , MicroARNs/metabolismo , Morfogénesis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
3.
Sheng Wu Gong Cheng Xue Bao ; 39(4): 1525-1547, 2023 Apr 25.
Artículo en Zh | MEDLINE | ID: mdl-37154321

RESUMEN

Cell cycle plays a crucial role in cell development. Cell cycle progression is mainly regulated by cyclin dependent kinase (CDK), cyclin and endogenous CDK inhibitor (CKI). Among these, CDK is the main cell cycle regulator, binding to cyclin to form the cyclin-CDK complex, which phosphorylates hundreds of substrates and regulates interphase and mitotic progression. Abnormal activity of various cell cycle proteins can cause uncontrolled proliferation of cancer cells, which leads to cancer development. Therefore, understanding the changes in CDK activity, cyclin-CDK assembly and the role of CDK inhibitors will help to understand the underlying regulatory processes in cell cycle progression, as well as provide a basis for the treatment of cancer and disease and the development of CDK inhibitor-based therapeutic agents. This review focuses on the key events of CDK activation or inactivation, and summarizes the regulatory processes of cyclin-CDK at specific times and locations, as well as the progress of research on relevant CDK inhibitor therapeutics in cancer and disease. The review concludes with a brief description of the current challenges of the cell cycle process, with the aim to provide scientific references and new ideas for further research on cell cycle process.


Asunto(s)
Quinasas Ciclina-Dependientes , Ciclinas , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Quinasa 2 Dependiente de la Ciclina
4.
Front Mol Biosci ; 9: 817517, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35769907

RESUMEN

Long non-coding RNAs (lncRNAs) were originally defined as non-coding RNAs (ncRNAs) which lack protein-coding ability. However, with the emergence of technologies such as ribosome profiling sequencing and ribosome-nascent chain complex sequencing, it has been demonstrated that most lncRNAs have short open reading frames hence the potential to encode functional micropeptides. Such micropeptides have been described to be widely involved in life-sustaining activities in several organisms, such as homeostasis regulation, disease, and tumor occurrence, and development, and morphological development of animals, and plants. In this review, we focus on the latest developments in the field of lncRNA-encoded micropeptides, and describe the relevant computational tools and techniques for micropeptide prediction and identification. This review aims to serve as a reference for future research studies on lncRNA-encoded micropeptides.

5.
Sheng Wu Gong Cheng Xue Bao ; 38(9): 3194-3214, 2022 Sep 25.
Artículo en Zh | MEDLINE | ID: mdl-36151793

RESUMEN

Long non-coding RNA (lncRNA) refers to non-coding RNA longer than 200 nt, with one or more short open reading frames (sORF), which encode functional micro-peptides. These functional micro-peptides often play key roles in various biological processes, such as Ca2+ transport, mitochondrial metabolism, myocyte fusion, cellular senescence and others. At the same time, these biological processes play a key role in the regulation of body homeostasis, diseases and cancers development and progression, embryonic development and other important physiological processes. Therefore, studying the potential regulatory mechanisms of micro-peptides encoded by lncRNA in organisms will help to further elucidate the potential regulatory processes in organisms. Furthermore, it will provide a new theoretical basis for the subsequent targeted treatment of diseases and improvement of animal growth performance. This review summarizes the latest research progress in the field of lncRNA-encoded micro-peptides, as well as the progress in the fields of muscle physiological regulation, inflammation and immunity, common human cancers, and embryonic development. Finally, the challenges of lncRNA-encoded micro-peptides are briefly described, with the aim to facilitate subsequent in-depth research on micro-peptides.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Animales , Humanos , Neoplasias/genética , Neoplasias/terapia , Sistemas de Lectura Abierta , Péptidos/química , ARN Largo no Codificante/genética
6.
Front Vet Sci ; 9: 959952, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090177

RESUMEN

Cashmere goat hair follicles are divided into primary hair follicles and secondary hair follicles. The primary hair follicles produce coarse hair, and the secondary hair follicles produce cashmere. The development of hair follicles is affected by a variety of signaling molecules and pathways. Studies have shown that non-coding RNAs are widely involved in the development of hair follicles of the goat, including small RNAs (miRNAs), long non-coding RNAs (lncRNA), and circular RNAs (circRNAs). In recent years, circRNAs, as a new type of circular closed non-coding RNAs, have attracted great attention due to their high stability. However, its regulatory effect on cashmere goat hair follicles mainly focuses on the periodic regulation of secondary hair follicles, and there is no report on the development of cashmere goat hair follicles during the fetal period. Therefore, this study was based on the circRNA, miRNA, and mRNA expression profiles obtained by whole-transcriptional sequencing of the skin tissue of the Inner Mongolia cashmere goats in the fetal period (days 45, 55, 65, and 75) and screening out the morphological changes of hair follicles at different periods. A total of 113 circRNAs related to the development of secondary hair follicles were present. According to the principle of the ceRNA regulatory network, a ceRNA regulatory network composed of 13 circRNAs, 21 miRNAs, and 110 mRNAs related to the development of secondary hair follicles was constructed. Then, qRT-PCR and Sanger sequencing identified circRNA2034, circRNA5712, circRNA888, and circRNA9127 were circRNAs. Next, the dual-luciferase reporter gene verified the targeting relationship of circRNA5712-miR-27b-3p-Dll4. In conclusion, this study constructed a ceRNA regulatory network for the development of cashmere goat secondary hair follicles, laying a foundation for the analysis of circRNAs regulating the morphogenesis and development of cashmere goat secondary hair follicles through the ceRNA mechanism.

7.
Front Vet Sci ; 9: 995604, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118352

RESUMEN

The hair follicle is a complex skin accessory organ, which determines hair growth. Long non-coding RNAs (lncRNAs) have been proven to play an important role in hair follicle development, but their specific mechanism is still unclear. In this study, high-throughput sequencing was used to obtain the expression profiles of lncRNA in the hair follicles of Inner Mongolian cashmere goats at different embryonic stages (45, 55, 65, and 75 days), and a total of 6,630 lncRNA were identified. According to the rules of hair follicle development, we combined miRNA and mRNA databases (published) and predicted lncRNA-miRNA, miRNA-mRNA, and lncRNA-mRNA interaction pairs in the 45 vs. 75 comparison group. We obtained 516 lncRNA-mRNA, 1,011 lncRNA-miRNA, and 7,411 miRNA-mRNA relationship pairs. Finally, target genes were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and it was found that they were mainly enriched in the Wnt signaling pathway and PI3K-Akt signaling pathway related to hair follicle development, indicating that lncRNA may interact with miRNA/mRNA to directly or indirectly regulate the expression of genes related to hair follicle development. Dual-luciferase reporter gene analysis showed that lncRNA MSTRG.1705.1 could bind to Chi-miR-1, while lncRNA MSTRG.11809.1 had no binding site for Chi-miR-433. In conclusion, this study aims to further analyze the molecular regulation mechanism of hair follicle development and to lay a theoretical foundation for revealing the regulation mechanism of cashmere hair follicle growth.

8.
G3 (Bethesda) ; 11(5)2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33755111

RESUMEN

MicroRNAs (miRNAs), a class of 22 nucleotide (nt) noncoding RNAs, negatively regulate mRNA posttranscriptional modification in various biological processes. Morphogenesis of skin hair follicles in cashmere goats is a dynamic process involving many key signaling molecules, but the associated cellular biological mechanisms induced by these key signaling molecules have not been reported. In this study, differential expression, bioinformatics, and Gene Ontology/Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed on miRNA expression profiles of Inner Mongolian cashmere goats at 45, 55, and 65 days during the fetal period, and chi-miR-370-3p was identified and investigated further. Real-time fluorescence quantification (qRT-PCR), dual luciferase reporting, and Western blotting results showed that transforming growth factor beta receptor 2 (TGF-ßR2) and fibroblast growth factor receptor 2 (FGFR2) were the target genes of chi-miR-370-3p. Chi-miR-370-3p also regulated the expression of TGF-ßR2 and FGFR2 at mRNA and protein levels in epithelial cells and dermal fibroblasts. DNA staining, Cell Counting Kit-8, and fluorescein-labelled Annexin V results showed that chi-miR-370-3p inhibited the proliferation of epithelial cells and fibroblasts but had no effect on apoptosis. Cell scratch test results showed that chi-miR-370-3p promoted the migration of epithelial cells and fibroblasts. Chi-miR-370-3p inhibits the proliferation of epithelial cells and fibroblasts by targeting TGF-ßR2 and FGFR2, thereby improving cell migration ability and ultimately regulating the fate of epithelial cells and dermal fibroblasts to develop the placode and dermal condensate, inducing hair follicle morphogenesis.


Asunto(s)
Cabras , MicroARNs , Animales , Proliferación Celular , Perfilación de la Expresión Génica , Cabras/genética , Folículo Piloso , MicroARNs/genética , Morfogénesis
9.
Front Genet ; 12: 678825, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178035

RESUMEN

BACKGROUND: Inner Mongolian cashmere goats have hair of excellent quality and high economic value, and the skin hair follicle traits of cashmere goats have a direct and important effect on cashmere yield and quality. Circular RNA has been studied in a variety of tissues and cells. RESULT: In this study, high-throughput sequencing was used to obtain the expression profiles of circular RNA (circRNA) in the hair follicles of Inner Mongolian cashmere goats at different embryonic stages (45, 55, 65, and 75 days). A total of 21,784 circRNAs were identified. At the same time, the differentially expressed circRNA in the six comparison groups formed in the four stages were: d75vsd45, 59 upregulated and 33 downregulated DE circRNAs; d75vsd55, 61 upregulated and 102 downregulated DE circRNAs; d75vsd65, 32 upregulated and 33 downregulated DE circRNAs; d65vsd55, 67 upregulated and 169 downregulated DE circRNAs; d65vsd45, 96 upregulated and 63 downregulated DE circRNAs; and d55vsd45, 76 upregulated and 42 downregulated DE circRNAs. Six DE circRNA were randomly selected to verify the reliability of the sequencing results by quantitative RT-PCR. Subsequently, the circRNA corresponding host genes were analyzed by the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The results showed that the biological processes related to hair follicle growth and development enriched by GO mainly included hair follicle morphogenesis and cell development, and the signaling pathways related to hair follicle development included the Notch signaling pathway and NF-κB signaling pathway. We combined the DE circRNA of d75vsd45 with miRNA and mRNA databases (unpublished) to construct the regulatory network of circRNA-miRNA-mRNA, and formed a total of 102 pairs of circRNA-miRNA and 126 pairs of miRNA-mRNA interactions. The binding relationship of circRNA3236-chi-miR-27b-3p and circRNA3236-chi-miR-16b-3p was further verified by dual-luciferase reporter assays, and the results showed that circRNA3236 and chi-miR-27b-3p, and circRNA3236 and chi-miR-16b-3p have a targeted binding relationship. CONCLUSION: To summarize, we established the expression profiling of circRNA in the fetal skin hair follicles of cashmere goats, and found that the host gene of circRNA may be involved in the development of hair follicles of cashmere goats. The regulatory network of circRNA-miRNA-mRNA was constructed and preliminarily verified using DE circRNAs.

10.
G3 (Bethesda) ; 11(1)2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33561234

RESUMEN

The development of hair follicles (HFs) is dependent on interactions between epithelial cells and dermal fibroblasts, which may play an important role in maintaining the structure of HFs during their development and maturation. Wnt family member 10 (WNT10A) is a hub gene during HF development and maturation that may regulate the proliferation of dermal fibroblasts and epithelial cells through microRNAs (miRNAs) and messenger RNAs (mRNAs) to maintain the structural stability of HFs. In the present study, we confirmed that WNT10A is the target gene of chi-miR-130b-3p by real-time quantitative PCR, western blotting, and a dual-luciferase reporter gene assay. We successfully cultured fetal epithelial cells and dermal fibroblasts using the tissue block attachment method, and Cell Counting Kit-8 (CCK8) results showed that chi-miR-130b-3p regulates epithelial cell and dermal fibroblast proliferation by targeting WNT10A.


Asunto(s)
Folículo Piloso , MicroARNs , Animales , Proliferación Celular , China , Feto , Cabras/genética
11.
PLoS One ; 15(12): e0243507, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33351808

RESUMEN

OBJECTIVE: Mature hair follicles represent an important stage of hair follicle development, which determines the stability of hair follicle structure and its ability to enter the hair cycle. Here, we used weighted gene co-expression network analysis (WGCNA) to identify hub genes of mature skin and hair follicles in Inner Mongolian cashmere goats. METHODS: We used transcriptome sequencing data for the skin of Inner Mongolian cashmere goats from fetal days 45-135 days, and divided the co expressed genes into different modules by WGCNA. Characteristic values were used to screen out modules that were highly expressed in mature skin follicles. Module hub genes were then selected based on the correlation coefficients between the gene and module eigenvalue, gene connectivity, and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results were confirmed by quantitative polymerase chain reaction (qPCR). RESULTS: Ten modules were successfully defined, of which one, with a total of 3166 genes, was selected as a specific module through sample and gene expression pattern analyses. A total of 584 candidate hub genes in the module were screened by the correlation coefficients between the genes and module eigenvalue and gene connectivity. Finally, GO/KEGG functional enrichment analyses detected WNT10A as a key gene in the development and maturation of skin hair follicles in fetal Inner Mongolian cashmere goats. qPCR showed that the expression trends of 13 genes from seven fetal skin samples were consistent with the sequencing results, indicating that the sequencing results were reliable.n.


Asunto(s)
Cabras/genética , Folículo Piloso/embriología , Animales , China , Desarrollo Fetal/genética , Feto/metabolismo , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Redes Reguladoras de Genes/genética , Genoma/genética , Cabras/embriología , Folículo Piloso/metabolismo , ARN Mensajero/genética , Piel/metabolismo , Transcriptoma/genética
12.
Arch Anim Breed ; 63(2): 461-470, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33473371

RESUMEN

This study is focused on the detection of ectodysplasin A (EDA) and ectodysplasin A receptor (EDAR) mRNA expression levels and protein positions in seven stages of cashmere goat fetus development (45, 55, 65, 75 95, 115, and 135 d), with the main goal of investigating the effect of EDA and EDAR on genes related to hair follicle development. Quantitative real-time polymerase chain reaction (RT-qPCR) was used to measure EDA and EDAR expression levels in seven stages of cashmere goat fetus development. Immunohistochemistry (IHC) was used to locate EDA and EDAR in the critical stage of fetal hair follicle development (45-135 d). EDA and EDAR expression in fetal fibroblasts and epithelial cells was interfered with by short hairpin RNA (sh-RNA). The results indicated that EDA and EDAR were both expressed in the skin tissue in the seven cashmere goat embryo stages. Moreover, EDA and EDAR play an important role in the formation of embryonic placode (Pc). After interfering with EDA and EDAR, the expression of BMP2, BMP4, noggin, ß -catenin, TGF- ß 2, Wnt-10b, and NOTCH1 in fibroblasts and epithelial cells changed significantly. This study provides a theoretical and experimental basis for further studying the molecular regulation mechanism of hair follicle development.

13.
Sci Rep ; 10(1): 4519, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32161290

RESUMEN

Inner Mongolia cashmere goats, as an important part of animal husbandry production, play an important role in animal fiber industry. In recent years, scientific research has made a lot of explorations on the molecular regulation mechanism of hair follicle cycle growth, but few studies have been reported on the development of cashmere hair in fetal period. This study was based on the completion of 21 skin samples of mRNA and miRNA sequencing in 7 fetal periods (45 days, 55 days,65 days,75 days,95 days,115 days and 135 days) of the Inner Mongolia Cashmere goat. The target genes of miRNA associated with the development of secondary hair follicles in the cashmere goats were selected through the combination analysis of mRNA and miRNA data. Then the overexpression vector was constructed and the interaction between the miRNA and the target gene was identified by Dual-Luciferase Reporter Gene System. The function and interaction relationship of chi-miR-199a-5p and TGF-ß2 were verified by RT-qPCR and western blot at the level of the fibroblasts in Inner Mongolia Cashmere goat. It provides a theoretical basis for further study of miRNA and its target genes regulating the occurrence and development of skin hair follicles. As the result shows, the expression trends of 7 genes (BAMBI, SMAD1, LTBP1, PPP2R1B, ID4, BMP8B and PITX2) and 7 miRNA (chi-miR-17-5p, chi-miR-125b-3p, chi-miR-21-5p, chi-miR-143-5p and chi-miR-106b-5p) in the skin samples for the seven stages of the fetus were shown to be consistent with the sequencing results. the results of sequencing are reliable. The correlation coefficient of TGF-ß2 and chi-miR-199a-5p in fetal 45d-135d expression is -0.84, showing a strong negative correlation, The target relationship was preliminarily judged. The results of double luciferase vector report showed that chi-miR-199a-5p significantly decreased the expression of luciferase in TGF-ß2 3'UTR, It is determined that there is a reciprocal relationship between them at a specific time. We transfected chi-miR199a-5p-FAM mimics into fibroblasts cultured in vitro from Inner Mongolia cashmere goats. After transfection, the cells were harvested to extract total RNA and protein. The mRNA and protein expression levels of TGF-ß2 in fibroblasts were detected by RT-qPCR and western blot. It was verified that chi-miR-199a-5p inhibited TGF-ß2 expression at both mRNA and protein translation levels in fibroblasts. At the same time, it was again proved that the TGF-ß2 gene is a target gene of chi-miR199a-5p.


Asunto(s)
Regulación de la Expresión Génica , Cabras/genética , Folículo Piloso/metabolismo , MicroARNs/genética , Interferencia de ARN , ARN Mensajero/genética , Animales , Biología Computacional/métodos , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Ontología de Genes , Genes Reporteros , Secuenciación de Nucleótidos de Alto Rendimiento
14.
Sci Rep ; 9(1): 17735, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31780728

RESUMEN

The undercoat fiber of the cashmere goat, from the secondary hair follicle (HF), possesses commercial value. However, very few studies have focused on the molecular details of primary and secondary HF initiation and development in goat embryos. In this study, skin samples at embryonic day 45, 55, and 65 (E45, E55, and E65) were collected and prepared for RNA sequencing (RNA-seq). We found that the HF probably initiated from E55 to E65 by analyzing the functional pathways of differentially expressed genes (DEGs). Most key genes in canonical signaling pathways, including WNT, TGF-ß, FGF, Hedgehog, NOTCH, and other factors showed clear expression changes from E55 to E65. We, for the first time, explored alternative splicing (AS) alterations, which showed distinct patterns among these three stages. Functional pathways of AS-regulated genes showed connections to HF development. By comparing the published RNA-seq samples from the E60, E120, and newborn (NB) stages, we found the majority of WNT/ß-catenin signaling genes were important in the initiation of HF development, while other factors including FOXN1, GATA3, and DLX3 may have a consistent influence on HF development. Our investigation supported the time points of embryonic HF initiation and identified genes that have potential functions of embryonic HF initiation and development. We further explored the potential regulatory roles of AS in HF initiation, which extended our knowledge about the molecular mechanisms of HF development.


Asunto(s)
Empalme Alternativo , Regulación del Desarrollo de la Expresión Génica , Cabras/genética , Folículo Piloso/embriología , Transcriptoma , Animales , Perfilación de la Expresión Génica , Cabras/embriología , Folículo Piloso/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA