Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Growth Factors ; : 1-10, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39001597

RESUMEN

Aims: This study aims to explore the potential role of vascular endothelial growth factor-B (VEGF-B) in the pathogenesis of diabetic peripheral neuropathy (DPN). The expression of VEGFRs were reanalysed by using gene arrays of peripheral nerve samples from mouse models of DPN retrieved from the GEO database. 213 T2D patients as well as 31 healthy individuals were recruited. The serum VEGF-B was detected and its relationship with DPN was analysed. The elevated VEGFR1 was the only change of VEGFR gene expression in the peripheral nerve from mouse models of DPN. The level of serum VEGF-B in T2D patients with DPN was higher than that in T2D patients without DPN and healthy people. Analysis of correlation and binary logistic regression confirmed that the increased serum VEGF-B level was an independent risk factor of DPN in T2D patients. VEGF-B-VEGFR1 signaling pathway may be involved in the development of DPN.

2.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6545-6550, 2023 Dec.
Artículo en Zh | MEDLINE | ID: mdl-38212015

RESUMEN

Rhein, which is one of the main active components of Rheum palmatum, has a range of pharmacological activities such as the regulation of the metabolism of glucose and lipids, anti-inflammatory, anti-tumor, anti-fibrosis, etc. Epigenetics refers to the heritable variation of gene expression without altering the DNA sequence. It is involved in the emergence and development of inflammation, renal fibrosis, diabetes, cancer, atherosclerosis, and other diseases, thus becoming a new strategy for the treatment of many di-seases. A series of studies have shown that epigenetic modification may be a common molecular mechanism of various pharmacological effects of rhein. This paper summarized the effects of rhein on the regulation of epigenetic modification and its underlying mechanisms, which involve the regulation of DNA methylation, protein acetylation, and RNA methylation, so as to provide a basis for the development and application of rhein.


Asunto(s)
Antraquinonas , Neoplasias , Humanos , Antraquinonas/farmacología , Metilación de ADN , Epigénesis Genética , Neoplasias/tratamiento farmacológico , Fibrosis
3.
FASEB J ; 34(2): 3367-3378, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31919912

RESUMEN

Ppardδ, one of the lipid-activated nuclear receptor expressed in many cell types to activate gene transcription, also regulates cellular functions other than lipid metabolism. The mechanism regulating the function of antigen-presenting cells during the development of atherosclerosis is not fully understood. Here we aimed to study the involvement of PPARδ in CD11c+ cells in atherosclerosis. We used the Cre-loxP approach to make conditional deletion of Ppard in CD11c+ cells in mice on Apoe-/- background, which were fed with high cholesterol diet to develop atherosclerosis. Ppard deficiency in CD11c+ cells attenuated atherosclerotic plaque formation and infiltration of myeloid-derived dendritic cells (DCs) and T lymphocytes. Reduced lesion was accompanied by reduced activation of dendritic cells, and also a reduction of activation and differentiation of T cells to Th1 cells. In addition, DC migration to lymph node was also attenuated with Ppard deletion. In bone marrow-derived DCs, Ppard deficiency reduced palmitic acid-induced upregulation of co-stimulatory molecules and pro-inflammatory cytokine IL12 and TNFα. Our results indicated PPARδ activation by fatty acid resulted in the activation of myeloid DCs and subsequent polarization of T lymphocytes, which contributed to atherosclerosis in Apoe-/- mice. These findings also reveal the potential regulatory role of PPARδ in antigen presentation to orchestrate the immune responses during atherosclerosis.


Asunto(s)
Aterosclerosis/metabolismo , Células Dendríticas/metabolismo , Eliminación de Gen , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/genética , Antígenos CD11/genética , Antígenos CD11/metabolismo , Células Cultivadas , Interleucina-12/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores Citoplasmáticos y Nucleares/genética , Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
4.
Anal Chem ; 92(1): 1058-1067, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31826605

RESUMEN

A facile solvothermal method was developed for synthesis of magnetic nickel-based iron oxide nanocomposites (MNFOs) with different ratios of Ni2+ to Fe3+ for different reaction time. Two factors including dosage of Ni source and length of reaction were investigated for influence on the morphology and composition of MNFOs, as well as their distinct selectivity for different phosphopeptides. After thorough characterization, the possible formation mechanism of MNFOs was proposed. Very interestingly, MNFOs with Ni2+/Fe3+ ratios of 4:5 prepared for 8 h (MNFO-S) and for 24 h (MNFO-L) can selectively capture global- and monophosphopeptides at the fmol level with excellent enrichment performance. These two affinity probes have been exploited to isolate and enrich the phosphopeptides from human normal hepatic cells HL 7702 after exposure to atmospheric fine particulates (PM2.1), which revealed that the protein phosphorylation level was increased significantly in cells after stimulation by fine particulate matters. The findings could provide a new insight for the nickel-based affinity protocol to analyze the mutation of phosphopeptides during cellular signaling pathways in response to exogenous environment stimulation. Consequently, this present work proposed a promising strategy to isolate monophosphopeptides from global phosphopeptides for phosphoproteome research.


Asunto(s)
Nanopartículas de Magnetita/química , Nanocompuestos/química , Fosfopéptidos/análisis , Animales , Línea Celular , Humanos , Espectrometría de Masas , Leche/química , Níquel/química , Material Particulado/farmacología , Fosfopéptidos/sangre , Fosforilación/efectos de los fármacos , Proteómica/métodos
5.
Analyst ; 145(13): 4432-4435, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32441734

RESUMEN

Highly efficient enrichment of target glycopeptides plays a crucial role in glycoproteome research. Owing to their large surface area and excellent hydrophilicity, 2-D Hf-BTB nanosheets showed effective and selective enrichment of 78 glycopeptides derived from 29 glycoproteins with 90 N-glycosylation sites from just 2 µL of human serum.

6.
Anal Chem ; 91(14): 9093-9101, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31204471

RESUMEN

Separation of monophosphopeptides from multi-phosphopeptides in complex biological samples is significant in the study of protein kinase signal transduction pathways. To the best of our knowledge, very few materials have been reported that could selectively enrich monophosphopeptides because of the chemical difficulty in retaining the intermediate monophosphopeptides and excluding both non-phosphopeptides and multi-phosphopeptides in acidic conditions, which requires unique interactions to balance the metallic affinity and the hydrophobicity. With the large surface area, abundant accessible active sites, and ultrathin structures, two-dimensional (2-D) metal-organic framework (MOF) Hf-1,3,5-tris(4-carboxyphenyl)benzene (BTB) nanosheets were rationally selected. Due to the elongated organic ligands and the balance between metallic affinity of clusters and hydrophobicity from ligands, the 2-D Hf-BTB nanosheets exhibited unique enrichment selectivity toward monophosphopeptides. The 2-D MOF nanosheets demonstrated excellent sensitivity (detection limit of 0.4 fmol µL-1) and selectivity [1:1000 molar ratios of ß-casein/BSA (bovine serum albumin)] in model phosphopeptides enrichment. The nanosheets were implemented for the analysis of nonfat milk and human saliva samples as well as in situ isotope labeling for dysregulated phosphopeptides from patients' serum with anal canal inflammation, exhibiting 6.6-fold upregulation of serum phosphopeptide HS4 (ADpSGEGDFLAEGGGVR) compared to the control healthy serum. The proteomics analysis of mouse brain cortical samples associated with Alzheimer's disease, which were from Akt (protein kinase B) conditional knockout mouse and littermate control mouse, was further established with 2-D Hf-BTB nanosheets. With high capture efficiency for monophosphopeptides, this method was capable of distinguishing the difference of monophosphopeptides from microtubule-associated protein τ (MAPT/τ) between the Akt knockout sample and control sample.


Asunto(s)
Estructuras Metalorgánicas/química , Nanoestructuras/química , Fosfopéptidos/aislamiento & purificación , Adulto , Enfermedad de Alzheimer/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Inflamación/sangre , Límite de Detección , Ratones Noqueados , Leche/química , Fosfopéptidos/sangre , Proctitis/sangre , Proteómica/métodos , Proteínas Proto-Oncogénicas c-akt/genética , Saliva/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
7.
Anal Chem ; 90(22): 13796-13805, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30372032

RESUMEN

Capturing phosphopeptides from complicated biological samples is essential for the discovery of new post-translational modification sites and disease diagnostics. Although several two-dimensional (2-D) materials have been used for phosphopeptides capturing, metal-organic framework (MOF) nanosheets have not been reported. The Ti-based MOF nanosheets have well-defined 2-D morphology, high density of active sites, large surface area, and an ultrathin structure. Phosphopeptides can be efficiently extracted and superior detection limits of 0.1 fmol µL-1 can be achieved even for an extremely low molar ratio of phosphoprotein/nonphosphoprotein (1:10000) mixtures. The selectivity over nonphosphopeptides can be enhanced further by pretreatment with a 10 mM salt solution (ß-glycerophosphate disodium, NaCl, or KCl). The performance of 2-D Ti-based MOF nanosheets is much better than Zr-based MOF (Zr-BTB) nanosheets or any other Ti-based 3-D MOF counterpart, such as MIL-125 and NH2-MIL-125. The nanosheets were used for in situ isotope labeling for abnormally regulated phosphopeptides analysis from serum samples of type 2 diabetes patients. The relative quantitative results showed that three of the phosphorylated fibrinogen peptides A (FPA, DpSGEGDFLAEGGGV, DpSGEGDFLAEGGGVR, and ADpSGEGDFLAEGGGVR) were down-regulated, while the other isoform (ADpSGEGDFLAEGGGV) was up-regulated in the serum samples of type 2 diabetes patients compared with those of healthy volunteers. Finally, proteomics analysis showed selective enrichment of phosphopeptides with 2-D Ti-based MOF nanosheets from real samples, including tryptic digests of mouse brain neocortex lysate, mouse spinal cord lysate, and mouse testis lysate, followed by LC-MS/MS analysis. Total numbers of 2601, 3208, and 2866 phosphopeptides were successfully identified from the three samples, respectively. The 2-D Ti-based MOF nanosheets significantly improved sample preparation for mass spectrometric analysis in phosphopeptides and phosphoproteomics research.


Asunto(s)
Diabetes Mellitus/sangre , Estructuras Metalorgánicas/metabolismo , Nanoestructuras , Péptidos/metabolismo , Fosfoproteínas/sangre , Secuencia de Aminoácidos , Animales , Estudios de Casos y Controles , Humanos , Ratones , Péptidos/química , Fosforilación
8.
Chemistry ; 24(9): 2109-2116, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29071782

RESUMEN

Phosphopeptide enrichment is essential for the phosphoprotein profiling, due to the low abundance in complex biological samples. Moreover, selective binding of multi-phosphopeptides over mono-phosphopeptides is rarely established, but strongly needed in real sample analysis, especially for the investigation of cell behaviors with the multisite phosphorylation cascades. Here two-dimensional (2D) nanosheets were synthesized of Egyptian blue (CaCuSi4 O10 ), the well-known ancient pigment, and its analogues (SrCuSi4 O10 and BaCuSi4 O10 ), which were employed in the enrichment of phosphopeptides for the first time. Surprisingly, the 2D CaCuSi4 O10 nanosheet was highly selective towards multi-phosphopeptides without enriching the mono-phosphorylated peptides in a wide range of acidic conditions or buffer compositions. Meanwhile, the SrCuSi4 O10 and BaCuSi4 O10 nanosheet analogues do not exhibit this unique selectivity. Moreover, the ultrathin and well-defined 2D morphology, with abundant CaII , of Egyptian blue nanosheet was applied in cortical samples of forebrain specific PDK1 conditional knockout mice and their age-matched littermate controls, that are associated with Alzheimer's disease. The as-prepared 2D CaCuSi4 O10 nanosheet not only showed specific selectivity, but also exhibited high sensitivity (detection limit of 4×10-7 m).


Asunto(s)
Cobre/química , Nanoestructuras/química , Fosfopéptidos/análisis , Silicatos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Cobre/metabolismo , Nanopartículas del Metal/química , Ratones , Ratones Noqueados , Leche/química , Leche/metabolismo , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Silicatos/metabolismo , Titanio/química , Proteínas tau/química , Proteínas tau/metabolismo
9.
Zhongguo Zhong Yao Za Zhi ; 42(6): 1109-1112, 2017 Mar.
Artículo en Zh | MEDLINE | ID: mdl-29027424

RESUMEN

Nonalcoholic fatty liver disease(NAFLD) is a kind of metabolic liver injury, which is closely associated with insulin resistance and genetic susceptibility. Traditional Chinese herbs used in the treatment of nonalcoholic fatty liver disease are widely investigated in recent years. A series of recent studies show that the effects of the active components in traditional Chinese herbs on NAFLD are associated with activating AMPK signaling pathway, improving insulin resistance, modulating the activity and expression of peroxisome proliferator-activated receptor γ, antioxidant and anti-inflammatory activities and regulating intestinal flora. In this review, the potential therapeutic targets of the active components from traditional Chinese herbs for NAFLD would be summarized to provide a new thought for further research and clinical treatment of nonalcoholic fatty liver disease.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Adenilato Quinasa/metabolismo , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Humanos , Resistencia a la Insulina , PPAR gamma/metabolismo , Transducción de Señal
10.
Zhongguo Zhong Yao Za Zhi ; 39(22): 4448-52, 2014 Nov.
Artículo en Zh | MEDLINE | ID: mdl-25850283

RESUMEN

Previous studies have shown that ginsenoside Rb1 (Rb1), one of active components in ginseng, can activate insulin signaling pathway and promote translocation of glucose transporters (GLUTs) to increase glucose uptake in adipocytes. However, the effect of Rb1 on the expressions of GLUTs remains unknown. In this study, the effects of Rb1 on GLUT1 and GLUT4 were observed in 3T3-L1 adipocytes and epididymal adipose tissue of db/db obese diabetic mice. Male db/db mice were treated with Rb1 by intraperitoneal injection at the dosage of 20 mg x kg(-1) for 14 d. Rb1 reduced HOMA-IR significantly (P < 0.05, n = 5), and FBG and FINS sowed declining trend after treatment with Rb1. Rb1 recovered the expressions of GLUT1 and GLUT4 and phosphorylation of AKT in adipose tissue of db/db mice. In vitro, glucose consumption in 3T3-L1 adipocytes treated with 10 micromol x L(-1) Rb1 for 24 h was elevated (P < 0.05, n=3), and mRNA of GLUT1 and GLUT4 were up-regulated (P < 0.05, n=3) and proteins of GLUT1 and GLUT4 were also increased. AKT was activated in adipocytes treated with Rb1 for 3 h. It can be concluded that ginsenoside Rb1 can up-regulate the expression of GLUTs in adipose tissue, in addition to activate insulin signalling pathway, which may partially account for its insulin sensitizing activity and regulating effect of glucose metabolism.


Asunto(s)
Adipocitos/efectos de los fármacos , Ginsenósidos/farmacología , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Glucosa/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Células 3T3 , Animales , Línea Celular , Diabetes Mellitus Experimental/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD
11.
J Ethnopharmacol ; 332: 118355, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38762213

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Radix scutellariae (the root of Scutellaria baicalensis Georgi) is a traditional Chinese medicine (TCM) used to treat a wide range of inflammation-related diseases, such as obesity, diabetes, diabetic kidney disease, and COVID-19-associated inflammatory states in the lung and kidney. Baicalin is the major anti-inflammatory component of Radix scutellariae and has shown the potential to inhibit inflammation in metabolic disorders. In this study, we explored the ability and underlying mechanisms of baicalin to modulate the macrophage to mitigate insulin resistance in obesity. MATERIALS AND METHODS: Obese mice were administered baicalin (50 mg/kg/day) intraperitoneally for 3 weeks. RAW264.7 and BMDM cells were stimulated with LPS and treated with baicalin for 24 h, while 3T3-L1 and primary white adipocytes were treated with the supernatants from baicalin-treated RAW264.7 cells for 24 h. RESULTS: The results showed that baicalin significantly improved glucose and insulin tolerance as well as decreased fat and adipose tissue macrophage levels in obese mice. Besides, baicalin significantly reduced serum and adipose tissue IL-1ß, TNF-α and IL-6 levels in obese mice, as well as suppressed LPS-induced IL-1ß, TNF-α and IL-6 expression and release in macrophages. Furthermore, treatment with the supernatant from baicalin-treated RAW264.7 cells increased the levels of PGC-1α, SIRT1, p-IRS-1 and p-AKT in adipocytes. Moreover, baicalin treatment dramatically downregulated macrophage p-p38, p-JNK, and Ac-p65Lys310 levels while increasing SIRT1 both in vivo and in vitro. Importantly, JNK inhibitor SP600125 blocked most of the effects of baicalin on SIRT1, Ac-p65Lys310 and pro-inflammatory factors in macrophages. CONCLUSION: Therefore, these results demonstrated for the first time that baicalin exerts its anti-inflammatory effects in obese adipose tissue macrophages mainly through suppressing JNK/SIRT1/p65 signaling. These findings amplified the mechanisms of baicalin and its potential to attenuate insulin resistance.


Asunto(s)
Células 3T3-L1 , Tejido Adiposo , Flavonoides , Resistencia a la Insulina , Macrófagos , Ratones Endogámicos C57BL , Obesidad , Animales , Flavonoides/farmacología , Flavonoides/uso terapéutico , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Masculino , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Scutellaria baicalensis/química
12.
Ageing Res Rev ; 94: 102191, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38199526

RESUMEN

Aging in humans is associated with abdominal distribution and remodeling of body fat and a parallel gradual increase in the prevalence of metabolic diseases such as obesity, type 2 diabetes mellitus and fatty liver disease, as well as the risk of developing metabolic complications. Current treatments might be improved by understanding the detailed mechanisms underlying the onset of age-related metabolic disorders. Neddylation, a post-translational modification that adds the ubiquitin-like protein NEDD8 to substrate proteins, has recently been linked to age-related metabolic diseases, opening new avenues of investigation and raising a potential target for treatment of these diseases. In this review, we will focus on the potential role of NEDD8-mediated neddylation in age-related metabolic dysregulation, insulin resistance, obesity, type 2 diabetes mellitus and fatty liver. We propose that alterations in NEDD8-mediated neddylation contribute to triggering insulin resistance and the development of age-related metabolic dysregulation, thus highlighting NEDD8 as a promising therapeutic target for preventing age-related metabolic diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Proteína NEDD8 , Ubiquitinas/metabolismo , Obesidad
13.
Res Vet Sci ; 170: 105185, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422838

RESUMEN

Outer membrane vesicles (OMVs) are soluble mediators secreted by Gram-negative bacteria that are involved in communication. They can carry a variety of harmful molecules, which induce cytotoxic responses and inflammatory reactions in the absence of direct host cell-bacterium interactions. We previously reported the isolation of OMVs from avian pathogenic Escherichia coli (APEC) culture medium by ultracentrifugation, and characterized them as a substance capable of inducing the production of pro-inflammatory cytokines and causing tissue damage. However, the specific mechanisms by which APEC-secreted OMVs activate host cell death signaling and inflammation are poorly understood. Here, we show that OMVs are involved in the pathogenesis of APEC disease. In an APEC/chicken macrophage (HD11) coculture system, APEC significantly promoted HD11 cell death and inflammatory responses by secreting OMVs. Using western blotting analysis and specific pathway inhibitors, we demonstrated that the induction of HD11 death by APEC OMVs is associated with the activation of receptor interacting serine/threonine kinase 1 (RIPK1)-, receptor interacting serine/threonine kinase 3 (RIPK3)-, and mixed lineage kinase like pseudokinase (MLKL)-induced necroptosis. Notably, necroptosis inhibitor-1 (Nec-1), an RIPK1 inhibitor, reversed these effects. We also showed that APEC OMVs promote the activation of the NF-κB signaling pathway, leading to the phosphorylation of IκB-α and p65, the increased nuclear translocation of p65, and the significant upregulation of interleukin 1ß (IL-1ß) and IL-6 transcription. Importantly, APEC OMVs-induced IL-1ß and IL-6 mRNA expression and the activation of the NF-κB signaling pathway were similarly significantly inhibited by a RIPK1-specific inhibitor. Based on these findings, we have established that RIPK1 plays a dual role in HD11 cells necroptosis and the proinflammatory cytokine (IL-1ß and IL-6) expression induced by APEC OMVs. RIPK1 mediated the induction of necroptosis and the activation of the NF-κB in HD11 cells via APEC OMVs. The results of this study provide a basis for further investigation of the contribution of OMVs to the pathogenesis of APEC.


Asunto(s)
Membrana Externa Bacteriana , Escherichia coli , FN-kappa B , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Animales , Pollos/metabolismo , Citocinas , Escherichia coli/metabolismo , Escherichia coli/patogenicidad , Inflamación/patología , Inflamación/veterinaria , Interleucina-6 , Macrófagos/metabolismo , Macrófagos/microbiología , FN-kappa B/metabolismo , Serina , Transducción de Señal , Membrana Externa Bacteriana/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
14.
Front Nutr ; 11: 1307519, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721033

RESUMEN

Background: Hepatic steatosis is a significant pathological feature of fatty liver disease (FLD) which is widely spread with no effective treatment available. Previous studies suggest that chromium (Cr) intake reduces lipid deposition in the liver in animals. However, the connection between blood Cr and hepatic steatosis among humans remains inconclusive. Methods: Using the data from the National Health and Nutrition Examination Survey (NHANES) 2017-2020, we performed a cross-sectional analysis, including 4,926 participants. The controlled attenuation parameter (CAP) measured by the vibration controlled transient elastography (VCTE) was used to evaluate the degree of liver steatosis. Weighted univariate regression, multivariate linear regression, smooth fitting curves and subgroup analysis were used. In addition, we carried out trend tests, multiple interpolations, and interaction analyses to conduct sensitivity analyses. Results: After adjusting with various covariables, multivariate linear regression analysis demonstrated a significant negative correlation between blood Cr and CAP [ß (95% CI) = -5.62 (-11.02, -0.21)]. The negative correlation between blood Cr and CAP was more significant in the males, 50-59 years, overweight, hypercholesterolemia, HDL-C ≥ 65 mg/dL, HbA1c (5.70-6.10 %), HOMA-IR (0.12-2.76), total bilirubin (0.30-0.40 mg/dL), ever alcohol consumption subjects. Of note, the relationships between blood Cr and CAP followed a U-shaped curve in the smokers and non-smokers, with blood Cr thresholds of 0.48, 0.69 µg/L, respectively. Conclusions: There is an independently negative correlation between blood Cr and hepatic steatosis in American. Our study provides clinical researchers with a new insight into the prospective prevention of hepatic steatosis.

15.
Zhongguo Zhong Yao Za Zhi ; 38(23): 4119-23, 2013 Dec.
Artículo en Zh | MEDLINE | ID: mdl-24791501

RESUMEN

Ginsenoside Rb1 is an active component in ginseng. Previous in vitro experiments showed that ginsenoside Rb1, could inhibit lipolysis and promote glucose transporter in adipocytes. This study focused on the effect of ginsenoside Rb1 in insulin resistance and ectopic fat deposit in obese mice induced by high fat diet and its molecular mechanism. Obese male C57/L mice induced by high fat diet were randomly divided into the diet-induced obesity group (DIO group), the ginsenoside Rb1 group (Rb1 group) and the rosiglitazone group (Rog group), and continuously fed with high fat diet. In addition, male C57/L mice fed with normal diet were selected as the normal group (NC group). Mice in Rb1 group and Rog groups were intraperitoneally injected with ginsenoside Rb1 and rosiglitazone with the dosage of 20 mg x kg(-1) and 10 mg x kg(-1), respectively. NC and DIO groups were intraperitoneally injected with the same amount of saline. Two weeks later, the intraperitoneal glucose tolerance test (IPGTT) was performed. Three days later, the mice were killed, and their serum samples were collected to detect insulin and free fatty acid (FFA). Their livers were weighed to examine the triglyceride content, and a pathological detection was performed. Epididymal adipose tissues were weighed, and PDE3B, HSL and perilipin were detected by Western blotting. The results showed that the treatment with ginsenoside Rb1 for two weeks could improve the glucose tolerance of obese mice. Except for 0-120 min, the areas under the glucose tolerance curve (0-30 min, 0-60 min and 0-90 min) in the Rb1 group were less than that in the DIO group (P < 0.05, n = 5), with a much lower HOMA-IR (P < 0.05, n = 5). The fat level of obese mice was significantly reduced by Rbl (P < 0.05, n = 5), and so were liver weight/weight (P < 0.05, n = 8). The increased serum FFA of obese mice declined after the treatment of Rb1 (P < 0.05, n = 8). Rb1 could partially recover the expression of perilipin in adipose tissues, but without obvious change in the expressions of PDE3B and HSL and the phosphorylated activation. The above findings indicated that ginsenoside Rb1 could reduce the release of FFA and alleviate the ectopic deposit of triglyceride by up-regulating the expression of perilipin in adipose tissue, which may be one of its mechanisms for improving the insulin resistance and abnormal glucose metabolism of organisms.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/patología , Dieta Alta en Grasa/efectos adversos , Ginsenósidos/farmacología , Resistencia a la Insulina , Obesidad/metabolismo , Obesidad/patología , Animales , Peso Corporal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ácidos Grasos no Esterificados/sangre , Regulación de la Expresión Génica/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/sangre , Obesidad/etiología , Tamaño de los Órganos/efectos de los fármacos , Triglicéridos/metabolismo
16.
Ageing Res Rev ; 84: 101829, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36563906

RESUMEN

Obesity and type 2 diabetes account for a considerable proportion of the global burden of age-related metabolic diseases. In age-related metabolic diseases, tissue crosstalk and metabolic regulation have been primarily linked to endocrine processes. Skeletal muscle and adipose tissue are endocrine organs that release myokines and adipokines into the bloodstream, respectively. These cytokines regulate metabolic responses in a variety of tissues, including skeletal muscle and adipose tissue. However, the intricate mechanisms underlying adipose-muscle crosstalk in age-related metabolic diseases are not fully understood. Recent exciting evidence suggests that myokines act to control adipose tissue functions, including lipolysis, browning, and inflammation, whereas adipokines mediate the beneficial actions of adipose tissue in the muscle, such as glucose uptake and metabolism. In this review, we assess the mechanisms of adipose-muscle crosstalk in age-related disorders and propose that the adipokines adiponectin and spexin, as well as the myokines irisin and interleukin-6 (IL-6), are crucial for maintaining the body's metabolic balance in age-related metabolic disorders. In addition, these changes of adipose-muscle crosstalk in response to exercise or dietary flavonoid consumption are part of the mechanisms of both functions in the remission of age-related metabolic disorders. A better understanding of the intricate relationships between adipose tissue and skeletal muscle could lead to more potent therapeutic approaches to prolong life and prevent age-related metabolic diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Tejido Adiposo , Obesidad/metabolismo , Adipoquinas/metabolismo , Músculo Esquelético/metabolismo
17.
Front Endocrinol (Lausanne) ; 14: 1124408, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875455

RESUMEN

Brown and beige adipose tissues regulate body energy expenditure through adaptive thermogenesis, which converts energy into heat by oxidative phosphorylation uncoupling. Although promoting adaptive thermogenesis has been demonstrated to be a prospective strategy for obesity control, there are few methods for increasing adipose tissue thermogenesis in a safe and effective way. Histone deacetylase (HDAC) is a category of epigenetic modifying enzymes that catalyzes deacetylation on both histone and non-histone proteins. Recent studies illustrated that HDACs play an important role in adipose tissue thermogenesis through modulating gene transcription and chromatin structure as well as cellular signals transduction in both deacetylation dependent or independent manners. Given that different classes and subtypes of HDACs show diversity in the mechanisms of adaptive thermogenesis regulation, we systematically summarized the effects of different HDACs on adaptive thermogenesis and their underlying mechanisms in this review. We also emphasized the differences among HDACs in thermogenesis regulation, which will help to find new efficient anti-obesity drugs targeting specific HDAC subtypes.


Asunto(s)
Tejido Adiposo , Fármacos Antiobesidad , Tejido Adiposo Beige , Histona Desacetilasas , Termogénesis
18.
Poult Sci ; 102(2): 102364, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36525747

RESUMEN

Avian pathogenic Escherichia coli (APEC) is a serious systemic infectious disease in poultry infections, causing severe economic losses to the poultry industry. Previous studies have shown that secretion of virulence proteins was required for the pathogenicity of APEC through the secretion system. Outer membrane vesicles (OMVs) are a generalized secretion system of Gram-negative bacteria that play a key role in the long-distance delivery of virulence factors, but whether they are associated with the pathogenic mechanism of APEC has not been determined. In this study, OMVs were purified and characterized from AE17 (O2 serotype) by ultracentrifugation and density gradient centrifugation and their protein cargo was identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). In addition, 89Zr was labeled after chelating AE17 OMVs by DFO and positron emission tomography PET imaging was used to track 89Zr-DFO-OMVs in chickens and to pathologically analyze the distribution sites. This study showed that AE17 OMVs were membrane vesicles ranging in size from 20 to 200 nm and proteomic analysis revealed the presence of virulence proteins, including adhesion proteins OmpA, OmpC, OmpF, OmpX, FimH, FimC and FigE, and serum resistance proteins OmpT and MliC and immune response regulator proteins (FliC). In addition, in vivo PET imaging to track the biodistribution of AE17 OMVs showed that AE17 OMVs were taken up by the lung region and the gastrointestinal and renal regions but were not detected in other areas. Pathological analysis of the tissue sites where AE17 OMVs were ingested showed inflammatory responses and damage. These findings suggested that AE17 OMVs not only contained a group of virulence proteins associated with AE17 infection but can also deliver these virulence proteins over long distances and caused tissue inflammatory damage. Our study revealed a previously unidentified causative microbial signal in the pathogenesis of APEC that could aid in the development of vaccines and antibiotics effective against APEC.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Enfermedades de las Aves de Corral , Animales , Escherichia coli/fisiología , Pollos/metabolismo , Distribución Tisular , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Cromatografía Liquida/veterinaria , Proteómica , Espectrometría de Masas en Tándem/veterinaria , Factores de Virulencia/metabolismo , Proteínas de Escherichia coli/metabolismo , Enfermedades de las Aves de Corral/diagnóstico por imagen , Enfermedades de las Aves de Corral/microbiología
19.
Redox Biol ; 62: 102704, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37086629

RESUMEN

Nuclear factor (NF)-κB plays a pivotal role in the regulation of inflammatory response in macrophages. Berberine (BBR), which is an active constituent isolated from Coptis rhizome, possesses a prominent anti-inflammatory activity. Here we show that BBR changes the global acetylation landscape in LPS-induced protein acetylation of macrophages and reduces the acetylation of NF-κB subunit p65 at site Lys310(p65Lys310), leading to the inhibition of NF-κB translocation and transcriptional activity to suppress the expressions of inflammatory factors. BBR resists the inflammatory response in acute LPS-stimulated mice through downregulation of p65Lys310 acetylation in peritoneal macrophages. In obese mice, BBR alleviates the metabolic disorder and inflammation with the reduced acetylation of p65Lys310 in white adipose tissue. Furthermore, we demonstrate that BBR acts as a regulator of p65Lys310 by inhibiting the expression of p300 in macrophages. Our findings elucidate a new molecular mechanism for the anti-inflammatory effect of BBR via the p300/p65Lys310 axis.


Asunto(s)
Berberina , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Berberina/farmacología , Berberina/metabolismo , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Acetilación , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Antiinflamatorios/farmacología
20.
Ageing Res Rev ; 73: 101509, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34752956

RESUMEN

It is known that a strong association exists between a suboptimal lifestyle (physical inactivity and sedentary behavior and/or high calorie diet) and increased propensity of developing age-associated diseases, such as obesity and T2DM. Physical exercise can alleviate obesity-induced insulin resistance and T2DM, however, the precise mechanism for this outcome is not fully understood. The endocrine disorder of adipose tissue in obesity plays a critical role in the development of insulin resistance. In this regard, spexin has been recently described as an adipokine that plays an important role in the pathophysiology of obesity-induced insulin resistance and T2DM. In obese states, expression of adipose tissue spexin is reduced, inducing the adipose tissue and skeletal muscle more susceptible to insulin resistance. Emerging evidences point out that exercise can increase spexin expression. In return, spexin could exert the exercise-protective roles to ameliorate insulin resistance, suggesting that spexin is a potential mediator for exercise to ameliorate obesity-induced insulin resistance and T2DM, namely, the beneficial effect of exercise on insulin sensitivity is at least partly mediated by spexin. This review summarizes our and others' recent studies regarding the effects of obesity on adipose tissue spexin induction, along with the potential effect of exercise on this response in obese context, and provides a new insight into the multivariate relationship among exercise, spexin and T2DM. It should be therefore taken into account that a combination of spexin and exercise training is an effective therapeutic strategy for age-associated diseases.


Asunto(s)
Resistencia a la Insulina , Hormonas Peptídicas , Tejido Adiposo , Ejercicio Físico , Humanos , Obesidad/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA