RESUMEN
Inborn errors of human interferon gamma (IFN-γ) immunity underlie mycobacterial disease. We report a patient with mycobacterial disease due to inherited deficiency of the transcription factor T-bet. The patient has extremely low counts of circulating Mycobacterium-reactive natural killer (NK), invariant NKT (iNKT), mucosal-associated invariant T (MAIT), and Vδ2+ γδ T lymphocytes, and of Mycobacterium-non reactive classic TH1 lymphocytes, with the residual populations of these cells also producing abnormally small amounts of IFN-γ. Other lymphocyte subsets develop normally but produce low levels of IFN-γ, with the exception of CD8+ αß T and non-classic CD4+ αß TH1∗ lymphocytes, which produce IFN-γ normally in response to mycobacterial antigens. Human T-bet deficiency thus underlies mycobacterial disease by preventing the development of innate (NK) and innate-like adaptive lymphocytes (iNKT, MAIT, and Vδ2+ γδ T cells) and IFN-γ production by them, with mycobacterium-specific, IFN-γ-producing, purely adaptive CD8+ αß T, and CD4+ αß TH1∗ cells unable to compensate for this deficit.
Asunto(s)
Inmunidad Adaptativa , Inmunidad Innata , Interferón gamma/inmunología , Mycobacterium/inmunología , Proteínas de Dominio T Box/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Linaje de la Célula , Preescolar , Cromatina/metabolismo , Islas de CpG/genética , Metilación de ADN/genética , Células Dendríticas/metabolismo , Epigénesis Genética , Femenino , Homocigoto , Humanos , Mutación INDEL/genética , Lactante , Interferón gamma/metabolismo , Células Asesinas Naturales/citología , Células Asesinas Naturales/metabolismo , Mutación con Pérdida de Función/genética , Masculino , Infecciones por Mycobacterium/genética , Infecciones por Mycobacterium/inmunología , Infecciones por Mycobacterium/microbiología , Linaje , Proteínas de Dominio T Box/química , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética , Linfocitos T Colaboradores-Inductores/inmunología , Transcriptoma/genéticaRESUMEN
DNA crosslinks block DNA replication and are repaired by the Fanconi anaemia pathway. The FANCD2-FANCI (D2-I) protein complex is central to this process as it initiates repair by coordinating DNA incisions around the lesion1. However, D2-I is also known to have a more general role in DNA repair and in protecting stalled replication forks from unscheduled degradation2-4. At present, it is unclear how DNA crosslinks are recognized and how D2-I functions in replication fork protection. Here, using single-molecule imaging, we show that D2-I is a sliding clamp that binds to and diffuses on double-stranded DNA. Notably, sliding D2-I stalls on encountering single-stranded-double-stranded (ss-ds) DNA junctions, structures that are generated when replication forks stall at DNA lesions5. Using cryogenic electron microscopy, we determined structures of D2-I on DNA that show that stalled D2-I makes specific interactions with the ss-dsDNA junction that are distinct from those made by sliding D2-I. Thus, D2-I surveys dsDNA and, when it reaches an ssDNA gap, it specifically clamps onto ss-dsDNA junctions. Because ss-dsDNA junctions are found at stalled replication forks, D2-I can identify sites of DNA damage. Therefore, our data provide a unified molecular mechanism that reconciles the roles of D2-I in the recognition and protection of stalled replication forks in several DNA repair pathways.
Asunto(s)
Daño del ADN , Reparación del ADN , Replicación del ADN , ADN de Cadena Simple , ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi , Proteínas del Grupo de Complementación de la Anemia de Fanconi , Animales , Femenino , Humanos , Extractos Celulares , Microscopía por Crioelectrón , Difusión , ADN/química , ADN/metabolismo , ADN/ultraestructura , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/ultraestructura , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/química , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/ultraestructura , Proteínas del Grupo de Complementación de la Anemia de Fanconi/química , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/ultraestructura , Modelos Moleculares , Unión Proteica , Imagen Individual de Molécula , Xenopus laevisRESUMEN
BACKGROUND: Ductal carcinoma in situ (DCIS) is the most common type of in situ premalignant breast cancers. What drives DCIS to invasive breast cancer is unclear. Basal-like invasive breast cancers are aggressive. We have previously shown that NRAS is highly expressed selectively in basal-like subtypes of invasive breast cancers and can promote their growth and progression. In this study, we investigated whether NRAS expression at the DCIS stage can control transition from luminal DCIS to basal-like invasive breast cancers. METHODS: Wilcoxon rank-sum test was performed to assess expression of NRAS in DCIS compared to invasive breast tumors in patients. NRAS mRNA levels were also determined by fluorescence in situ hybridization in patient tumor microarrays (TMAs) with concurrent normal, DCIS, and invasive breast cancer, and association of NRAS mRNA levels with DCIS and invasive breast cancer was assessed by paired Wilcoxon signed-rank test. Pearson's correlation was calculated between NRAS mRNA levels and basal biomarkers in the TMAs, as well as in patient datasets. RNA-seq data were generated in cell lines, and unsupervised hierarchical clustering was performed after combining with RNA-seq data from a previously published patient cohort. RESULTS: Invasive breast cancers showed higher NRAS mRNA levels compared to DCIS samples. These NRAShigh lesions were also enriched with basal-like features, such as basal gene expression signatures, lower ER, and higher p53 protein and Ki67 levels. We have shown previously that NRAS drives aggressive features in DCIS-like and basal-like SUM102PT cells. Here, we found that NRAS-silencing induced a shift to a luminal gene expression pattern. Conversely, NRAS overexpression in the luminal DCIS SUM225 cells induced a basal-like gene expression pattern, as well as an epithelial-to-mesenchymal transition signature. Furthermore, these cells formed disorganized mammospheres containing cell masses with an apparent reduction in adhesion. CONCLUSIONS: These data suggest that elevated NRAS levels in DCIS are not only a marker but can also control the emergence of basal-like features leading to more aggressive tumor activity, thus supporting the therapeutic hypothesis that targeting NRAS and/or downstream pathways may block disease progression for a subset of DCIS patients with high NRAS.
Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal no Infiltrante , Humanos , Femenino , Carcinoma Intraductal no Infiltrante/genética , Carcinoma Intraductal no Infiltrante/patología , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Carcinoma Ductal de Mama/patología , Proteína p53 Supresora de Tumor/genética , Neoplasias de la Mama/patología , Hibridación Fluorescente in Situ , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , ARN Mensajero , Progresión de la Enfermedad , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismoRESUMEN
Abnormal signaling transduction in salivary gland cells is associated with the pathogenesis of Sjögren's syndrome (SS). Previously, we identified aberrant expression of toll-like receptor 9 (TLR9) in gland cells of SS patients and mouse models. In this study, we investigated the role of TLR9 and its downstream p38/mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) signaling in mediating apoptosis and autophagy in human salivary gland (HSG) cells. We selected either CpG-Odn, a classical TLR9 activator, or lentivirus-packaged TLR9 full-length cDNA to activate TLR9 signaling transduction. Activation of TLR9 signaling induced phosphorylation of its downstream protein kinases, p38/MAPK and JNK, in a time-dependent manner, and decreased HSG cell viability. Western blotting of LC3B-II and p62 in both normal and autophagic flux-administered conditions revealed elevated autophagy upon TLR9 activation. Observing the cell cytoplasm through transmission electron microscopy and mRFP-GFP-LC3B-tagged fluorescence confirmed an increased number of autophagosomes and autolysosomes in TLR9-activated cells. Bax/Bcl-2 ratio calculations, caspase-3 activity assays and Hoechst nuclear staining were utilized to confirm the involvement of apoptosis in TLR9 signaling activation. Furthermore, we selected SB239063, a p38/MAPK signaling inhibitor, and SP600125, a JNK inhibitor, to identify the functions of p38/MAPK and JNK in TLR9-mediated signaling transduction. Multiple approaches, including Western blotting assays, fluorescence assessments and caspase-3 activity measurements, confirmed that inhibition of p38/MAPK signaling ameliorated both autophagy and apoptosis in TLR9-activated HSG cells, whereas inhibition of JNK signaling attenuated apoptosis but failed to modulate autophagy in the models mentioned above. Our results indicate a divergent function of p38/MAPK and JNK in TLR9-mediated autophagy and apoptosis in salivary gland cells.
Asunto(s)
Apoptosis , Autofagia , Sistema de Señalización de MAP Quinasas , Glándulas Salivales/citología , Receptor Toll-Like 9/metabolismo , Línea Celular Tumoral , Humanos , MAP Quinasa Quinasa 4/metabolismo , Receptor Toll-Like 9/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
BACKGROUND: Automatic solutions for generating radiotherapy treatment plans using deep learning (DL) have been investigated by mimicking the voxel's dose. However, plan optimization using voxel-dose features has not been extensively studied. PURPOSE: This study aims to investigate the efficiency of a direct optimization strategy with finite elements (FEs) after DL dose prediction for automatic intensity-modulated radiation therapy (IMRT) treatment planning. METHODS: A double-UNet DL model was adapted for 220 cervical cancer patients (200 for training and 20 for testing), who underwent IMRT between 2016 and 2020 at our clinic. The model inputs were computed tomography (CT) slices, organs at risk (OARs), and planning target volumes (PTVs), and the outputs were dose distributions of uniformly generated high-dose region-controlled plans. The FEs were discretized into equal intervals of the dose prediction value within the [OARs avoid PTV(O-P)] and [body avoids OARs & PTV(B-OP)] regions in the test cohort and used to define the objectives for IMRT plan optimization. The plans were optimized using a two-step process. In the beginning, the plans of two extra cases with and without low-dose region control were compared to pursue robust and optimal dose adjustment degree pattern of FEs. In the first step, the mean dose of O-P FEs were constrained to differing degrees according to the pattern. The further the FEs from the PTV, the tighter the constraints. In the second step, the mean dose of O-P FEs from first step were constrained again but weakly and the dose of the B-OP FEs from dose prediction and PTV were tightly regulated. The dosimetric parameters of the OARs and PTV were evaluated and compared using an interstep approach. In another 10 cases, the plans optimized via the aforementioned steps (method 1) were compared with those directly generated by the double-UNet dose prediction model trained by low and high region-controlled plans (method 2). RESULTS: The mean differences in dose metrics between the UNet-predicted dose and the clinical plans were: 0.47 Gy for bladder D50% ; 0.62 Gy for rectum D50% ; 0% for small intestine V30Gy ; 1% for small intestine V40Gy ; 4% for left femoral head V30Gy ; and 6% for right femoral head V30Gy . The reductions in mean dose (p < 0.001) after FE-based optimization were: 4.0, 1.9, 2.8, 5.9, and 5.7 Gy for the bladder, rectum, small intestine, left femoral head, and right femoral head, respectively, with flat PTV homogeneity and conformity. Method 1 plans produced lower mean doses than those of method 2 for the bladder (0.7 Gy), rectum (1.0 Gy), and small intestine (0.6 Gy), while maintaining PTV homogeneity and conformity. CONCLUSION: FE-based direct optimization produced lower OAR doses and adequate PTV doses after DL prediction. This solution offers rapid and automatic plan optimization without manual adjustment, particularly in low-dose regions.
Asunto(s)
Aprendizaje Profundo , Radioterapia de Intensidad Modulada , Neoplasias del Cuello Uterino , Femenino , Humanos , Radioterapia de Intensidad Modulada/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/radioterapia , Órganos en RiesgoRESUMEN
Solid tumours induce systemic immunosuppression that involves myeloid and T cells. B cell-related mechanisms remain relatively understudied. Here we discover two distinct patterns of tumour-induced B cell abnormality (TiBA; TiBA-1 and TiBA-2), both associated with abnormal myelopoiesis in the bone marrow. TiBA-1 probably results from the niche competition between pre-progenitor-B cells and myeloid progenitors, leading to a global reduction in downstream B cells. TiBA-2 is characterized by systemic accumulation of a unique early B cell population, driven by interaction with excessive neutrophils. Importantly, TiBA-2-associated early B cells foster the systemic accumulation of exhaustion-like T cells. Myeloid and B cells from the peripheral blood of patients with triple-negative breast cancer recapitulate the TiBA subtypes, and the distinct TiBA profile correlates with pathologic complete responses to standard-of-care immunotherapy. This study underscores the inter-patient diversity of tumour-induced systemic changes and emphasizes the need for treatments tailored to different B and myeloid cell abnormalities.
RESUMEN
Adaptive immunity is critical to eliminate malignant cells, while multiple tumor-intrinsic factors can alter this protective function. Melanoma antigen-A4 (MAGE-A4), a cancer-testis antigen, is expressed in several solid tumors and correlates with poor survival in non-small cell lung cancer (NSCLC), but its role in altering antitumor immunity remains unclear. We found that expression of MAGE-A4 was highly associated with the loss of PTEN , a tumor suppressor, in human NSCLC. Here we show that constitutive expression of human MAGE-A4 combined with the loss of Pten in mouse airway epithelial cells results in metastatic adenocarcinoma enriched in CD138 + CXCR4 + plasma cells, predominantly expressing IgA. Consistently, human NSCLC expressing MAGE-A4 showed increased CD138 + IgA + plasma cell density surrounding tumors. The abrogation of MAGE-A4-responsive plasma cells (MARPs) decreased tumor burden, increased T cell infiltration and activation, and reduced CD163 + CD206 + macrophages in mouse lungs. These findings suggest MAGE-A4 promotes NSCLC tumorigenesis, in part, through the recruitment and retention of IgA + MARPs in the lungs.
RESUMEN
Microenvironment niches determine cellular fates of metastatic cancer cells. However, robust and unbiased approaches to identify niche components and their molecular profiles are lacking. We established Sortase A-Based Microenvironment Niche Tagging (SAMENT), which selectively labels cells encountered by cancer cells during metastatic colonization. SAMENT was applied to multiple cancer models colonizing the same organ and the same cancer to different organs. Common metastatic niche features include macrophage enrichment and T cell depletion. Macrophage niches are phenotypically diverse between different organs. In bone, macrophages express the estrogen receptor alpha (ERα) and exhibit active ERα signaling in male and female hosts. Conditional knockout of Esr1 in macrophages significantly retarded bone colonization by allowing T cell infiltration. ERα expression was also discovered in human bone metastases of both genders. Collectively, we identified a unique population of ERα+ macrophages in the metastatic niche and functionally tied ERα signaling in macrophages to T cell exclusion during metastatic colonization. HIGHLIGHTS: SAMENT is a robust metastatic niche-labeling approach amenable to single-cell omics.Metastatic niches are typically enriched with macrophages and depleted of T cells.Direct interaction with cancer cells induces ERα expression in niche macrophages. Knockout of Esr1 in macrophages allows T cell infiltration and retards bone colonization.
RESUMEN
Long noncoding RNAs (lncRNA) play an important role in gene regulation in both normal tissues and cancer. Targeting lncRNAs is a promising therapeutic approach that has become feasible through the development of gapmer antisense oligonucleotides (ASO). Metastasis-associated lung adenocarcinoma transcript (Malat1) is an abundant lncRNA whose expression is upregulated in several cancers. Although Malat1 increases the migratory and invasive properties of tumor cells, its role in the tumor microenvironment (TME) is still not well defined. We explored the connection between Malat1 and the tumor immune microenvironment (TIME) using several immune-competent preclinical syngeneic Tp53-null triple-negative breast cancer (TNBC) mouse models that mimic the heterogeneity and immunosuppressive TME found in human breast cancer. Using a Malat1 ASO, we were able to knockdown Malat1 RNA expression resulting in a delay in primary tumor growth, decreased proliferation, and increased apoptosis. In addition, immunophenotyping of tumor-infiltrating lymphocytes revealed that Malat1 inhibition altered the TIME, with a decrease in immunosuppressive tumor-associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC) as well as an increase in cytotoxic CD8+ T cells. Malat1 depletion in tumor cells, TAMs, and MDSCs decreased immunosuppressive cytokine/chemokine secretion whereas Malat1 inhibition in T cells increased inflammatory secretions and T-cell proliferation. Combination of a Malat1 ASO with chemotherapy or immune checkpoint blockade (ICB) improved the treatment responses in a preclinical model. These studies highlight the immunostimulatory effects of Malat1 inhibition in TNBC, the benefit of a Malat1 ASO therapeutic, and its potential use in combination with chemotherapies and immunotherapies.
Asunto(s)
Adenocarcinoma , ARN Largo no Codificante , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , ARN Largo no Codificante/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Microambiente Tumoral , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/fisiología , Adenocarcinoma/genética , Línea Celular TumoralRESUMEN
The bone microenvironment is dynamic and undergoes remodeling in normal and pathologic conditions. Whether such remodeling affects disseminated tumor cells (DTC) and bone metastasis remains poorly understood. Here, we demonstrated that pathologic fractures increase metastatic colonization around the injury. NG2+ cells are a common participant in bone metastasis initiation and bone remodeling in both homeostatic and fractured conditions. NG2+ bone mesenchymal stem/stromal cells (BMSC) often colocalize with DTCs in the perivascular niche. Both DTCs and NG2+ BMSCs are recruited to remodeling sites. Ablation of NG2+ lineage impaired bone remodeling and concurrently diminished metastatic colonization. In cocultures, NG2+ BMSCs, especially when undergoing osteodifferentiation, enhanced cancer cell proliferation and migration. Knockout of N-cadherin in NG2+ cells abolished these effects in vitro and phenocopied NG2+ lineage depletion in vivo. These findings uncover dual roles of NG2+ cells in metastasis and remodeling and indicate that osteodifferentiation of BMSCs promotes metastasis initiation via N-cadherin-mediated cell-cell interaction. SIGNIFICANCE: The bone colonization of cancer cells occurs in an environment that undergoes constant remodeling. Our study provides mechanistic insights into how bone homeostasis and pathologic repair lead to the outgrowth of disseminated cancer cells, thereby opening new directions for further etiologic and epidemiologic studies of tumor recurrences. This article is highlighted in the In This Issue feature, p. 247.
Asunto(s)
Neoplasias Óseas , Osteogénesis , Humanos , Osteogénesis/genética , Recurrencia Local de Neoplasia , Neoplasias Óseas/genética , Diferenciación Celular , Remodelación Ósea , Cadherinas/genética , Microambiente TumoralRESUMEN
Remote tumors disrupt the bone marrow (BM) ecosystem (BME), eliciting the overproduction of BM-derived immunosuppressive cells. However, the underlying mechanisms remain poorly understood. Herein, we characterized breast and lung cancer-induced BME shifts pre- and post-tumor removal. Remote tumors progressively lead to osteoprogenitor (OP) expansion, hematopoietic stem cell dislocation, and CD41- granulocyte-monocyte progenitor (GMP) aggregation. The tumor-entrained BME is characterized by co-localization between CD41- GMPs and OPs. OP ablation abolishes this effect and diminishes abnormal myeloid overproduction. Mechanistically, HTRA1 carried by tumor-derived small extracellular vesicles upregulates MMP-13 in OPs, which in turn induces the alterations in the hematopoietic program. Importantly, these effects persist post-surgery and continue to impair anti-tumor immunity. Conditional knockout or inhibition of MMP-13 accelerates immune reinstatement and restores the efficacies of immunotherapies. Therefore, tumor-induced systemic effects are initiated by OP-GMP crosstalk that outlasts tumor burden, and additional treatment is required to reverse these effects for optimal therapeutic efficacy.
Asunto(s)
Ecosistema , Neoplasias , Humanos , Metaloproteinasa 13 de la Matriz/farmacología , Mielopoyesis , Células Madre Hematopoyéticas , Neoplasias/patología , Terapia de Inmunosupresión , Serina Peptidasa A1 que Requiere Temperaturas Altas/farmacologíaRESUMEN
Nearly 90% of patients with advanced prostate cancer manifest bone metastases. Distinct from the osteolytic metastasis mostly observed in other cancer types, prostate cancer bone metastasis is typically more osteoblastic, which is relatively understudied due to the lack of reliable and efficient models to resemble the indolent cellular growth and complexity of metastatic progression. In our previous studies, we developed bone-in-culture array (BICA) to primarily model the osteoblast-involved, pre-osteolytic stage of breast cancer bone metastasis. Given that the progression of prostate cancer bone metastasis is largely osteoblastic, it is reasonable to speculate that the original BICA model can be adjusted to investigate prostate cancer bone metastases. In this study, we refined BICA by reducing the surgical labor and improving its reproducibility and capacity. The optimized BICA can successfully recapitulate important features of prostate cancer bone metastasis such as the osteoblastic phenotype, indolent growth, cancer-niche interactions, and response to hormones. Our efforts address the long-standing need for reliable and efficient models to study prostate cancer bone metastasis.
Asunto(s)
Neoplasias Óseas , Neoplasias de la Próstata , Neoplasias Óseas/secundario , Humanos , Masculino , Osteoblastos , Neoplasias de la Próstata/patología , Reproducibilidad de los ResultadosRESUMEN
Inflammatory breast cancer (IBC), the most aggressive breast cancer subtype, is driven by an immunosuppressive tumor microenvironment (TME). Current treatments for IBC have limited efficacy. In a clinical trial (NCT01036087), an anti-EGFR antibody combined with neoadjuvant chemotherapy produced the highest pathological complete response rate ever reported in patients with IBC having triple-negative receptor status. We determined the molecular and immunological mechanisms behind this superior clinical outcome. Using novel humanized IBC mouse models, we discovered that EGFR-targeted therapy remodels the IBC TME by increasing cytotoxic T cells and reducing immunosuppressive regulatory T cells and M2 macrophages. These changes were due to diminishing immunosuppressive chemokine expression regulated by transcription factor EGR1. We also showed that induction of an immunoactive IBC TME by an anti-EGFR antibody improved the antitumor efficacy of an anti-PD-L1 antibody. Our findings lay the foundation for clinical trials evaluating EGFR-targeted therapy combined with immune checkpoint inhibitors in patients with cancer.
Asunto(s)
Neoplasias Inflamatorias de la Mama , Animales , Ratones , Receptores ErbB , Neoplasias Inflamatorias de la Mama/tratamiento farmacológico , Neoplasias Inflamatorias de la Mama/metabolismo , Neoplasias Inflamatorias de la Mama/patología , Terapia Neoadyuvante , Microambiente Tumoral , Ensayos Clínicos como Asunto , FemeninoRESUMEN
Immunosuppressive elements within the tumor microenvironment, such as tumor-associated macrophages (TAM), can present a barrier to successful antitumor responses by cytolytic T cells. Here we employed preclinical syngeneic p53 null mouse models of triple-negative breast cancer (TNBC) to develop a treatment regimen that harnessed the immunostimulatory effects of low-dose cyclophosphamide coupled with the pharmacologic inhibition of TAMs using either a small-molecule CSF1R inhibitor or an anti-CSF1R antibody. This therapeutic combination was effective in treating several highly aggressive TNBC murine mammary tumor and lung metastasis models. Single-cell RNA sequencing characterized tumor-infiltrating lymphocytes including Th cells and antigen-presenting B cells that were highly enriched in responders to combination therapy. In one model that exhibited long-term posttreatment tumor regression, high-dimensional imaging techniques identified the close spatial localization of B220+/CD86+-activated B cells and CD4+ T cells in tertiary lymphoid structures that were present up to 6 weeks posttreatment. The transcriptional and metabolic heterogeneity of TAMs was also characterized in two closely related claudin-low/mesenchymal subtype tumor models with differential treatment responses. A murine TAM signature derived from the T12 model was highly conserved in human claudin-low breast cancers, and high expression of the TAM signature correlated with reduced overall survival in patients with breast cancer. This TAM signature may help identify human patients with claudin-low breast cancer that will benefit from the combination of cyclophosphamide and anti-CSF1R therapy. These studies illustrate the complexity of the tumor immune microenvironment and highlight different immune responses that result from rational immunotherapy combinations. SIGNIFICANCE: Immunostimulatory chemotherapy combined with pharmacologic inhibition of TAMs results in durable treatment responses elicited by Th cells and B cells in claudin-low TNBC models.
Asunto(s)
Neoplasias de la Mama Triple Negativas , Animales , Linfocitos B , Claudinas/metabolismo , Claudinas/uso terapéutico , Ciclofosfamida/farmacología , Ciclofosfamida/uso terapéutico , Humanos , Macrófagos/metabolismo , Ratones , Linfocitos T Citotóxicos/patología , Neoplasias de la Mama Triple Negativas/patología , Microambiente TumoralRESUMEN
A precise predictive biomarker for TNBC response to immunochemotherapy is urgently needed. We previously established a 27-gene IO signature for TNBC derived from a previously established 101-gene model for classifying TNBC. Here we report a pilot study to assess the performance of a 27-gene IO signature in predicting the pCR of TNBC to preoperative immunochemotherapy. We obtained RNA sequencing data from the primary tumors of 55 patients with TNBC, who received neoadjuvant immunochemotherapy with the PD-L1 blocker durvalumab. We determined the power and accuracy in predicting pCR for the immunomodulatory (IM) subtype identified by the 101-gene model, the 27-gene IO signature, and PD-L1 expression by immunohistochemistry (IHC). The pCR rate was 45% (25/55). The odds ratios for pCR were as follows: IM subtype by 101-gene model, 3.14 (p = 0.054); 27-gene IO signature, 4.13 (p = 0.012); PD-L1 expression by IHC, 2.63 (p = 0.106); 27-gene IO signature in combination with PD-L1 expression by IHC, 6.53 (p = 0.003). The 27-gene IO signature has the potential to predict the pCR of primary TNBC to neoadjuvant immunochemotherapy. Further analysis in a large cohort is needed.
RESUMEN
BACKGROUND: To quantitatively evaluate lung damage after treatment of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) and stereotactic body radiotherapy (SBRT) in patients with nonsmall cell lung cancer (NSCLC), and compare that of SBRT only treatment. METHODS: Eligible patients from an IRB-approved prospective clinical trial had one month of EGFRTKIs treatment followed by SBRT (TKI + SBRT) and with 3-month follow-up high resolution CT. NSCLC patients treated with SBRT alone during the same time period without EGFR-TKIs or other systemic therapies were identified as controls. The lung damage was assessed clinically by pneumonitis and quantitatively using by CT intensity (Hounsfield unit, HU) changes. The mean HU values were extracted for regions of the lungs receiving the same dose range at 10 Gy intervals to generate dose-response curves (DRC). The relationship of HU changes and radiation dose was modeled using a Probit model. RESULTS: Four out of 20 (25%) TKI + SBRT patients and none of 19 (0%) SBRT alone patients had developed grade 2 and above pneumonitis (P=0.053), respectively. Sixty percent of TKI + SBRT patients and 30% SBRT alone patients had HU changes of the normal lung density >200 HU, respectively. There were significant differences in the DRC and in lung HU changes between the two groups (all P<0.05). The physical dose for a 50% complication risk (TD50) of CT lung damage was 52 Gy (CI: 46-59) in TKI + SBRT group versus 72 Gy (CI: 58-107) in SBRT alone group (P<0.01). CONCLUSIONS: Compared to patients treated with SBRT alone, patients treated with EGFR-TKIs followed by SBRT were more incline to develop radiation pneumonitis, and resulted in greater lung CT intensity changes and steeper dose-CT lung damage response relationship at 3 months post treatment. Future study with larger number of patients and longer follow-up period is warranted to validate this finding.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Radiocirugia , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Receptores ErbB , Humanos , Pulmón , Neoplasias Pulmonares/cirugía , Estudios Prospectivos , Inhibidores de Proteínas Quinasas/efectos adversos , Radiocirugia/efectos adversosRESUMEN
Pulmonary rehabilitation [PR] has been successfully carried out via telemedicine however initial patient assessment has been traditionally conducted in PR centers. The first step in PR is assessment of patient's exercise capacity which allows individualized prescription of safe and effective exercise program. With COVID-19 pandemics assessment of patients in PR centers has been limited resulting in significant reduction of patients undergoing life-saving PR. The goal of this pilot study was to introduce approaches for remote assessment of exercise capacity using videoconferencing platforms and provide initial usability assessment of this approach by conducing cognitive walkthrough testing. We developed a remote assessment system that supports comprehensive physical therapy assessment necessary for prescription of a personalized exercise program tailored to individual fitness level and limitations in gait and balance of the patient under evaluation. Usability was assessed by conducting cognitive walkthrough and system usability surveys. The usability inspection of the remote exercise assessment demonstrated overall high acceptance by all study participants. Our next steps in developing user-centered interface should include usability evaluation in different subgroups of patients with varying socio-economic background, different age groups, computer skills, literacy and numeracy.
Asunto(s)
Infecciones por Coronavirus , Pandemias , Neumonía Viral , Telerrehabilitación , Betacoronavirus , COVID-19 , Terapia por Ejercicio , Tolerancia al Ejercicio , Humanos , Proyectos Piloto , SARS-CoV-2 , Interfaz Usuario-ComputadorRESUMEN
It is very challenging to achieve polymers that are mechanically robust and fast self-healable at ambient conditions, which are highly desirable for smart materials of the next-generation. Herein, combining dynamic ditelluride bonds and 2-ureido-4[1H]-pyrimidinone (UPy) moieties in the main chains, a novel type of visible-light-induced self-healing water-dispersed supramolecular polymers (DTe-WSPs) with outstanding healing properties were developed. The prepared DTe-WSPs emulsions showed excellent emulsion stability, and highly transparent DTe-WSPs films obtained from these emulsions exhibited much improved mechanical properties and fast recoverability after the incorporation of UPy groups, owing to the physical cross-links formed by quadruple hydrogen-bonded UPy moieties. Supertoughness (105.2 MJ m-3) and fast self-healability under visible light (healing efficiency of 85.6% within 10 min) could be achieved simultaneously with the adjustment of the ditelluride content and the UPy content, and the toughness of our polymers is higher than those of the reported ambient temperature self-healable polymers. The visible-light-induced ditelluride metathesis is a predominant factor in the healing process of DTe-WSPs, and the ditelluride metathesis triggered by photothermy and hydrogen bonding could also afford the ultimate healing result. Meanwhile, DTe-WSPs can be reprocessed using visible light, providing a facile way to process polymers at mild conditions. To our surprise, the "living" DTe-WSPs exhibited the ability to initiate the polymerization of vinyl monomers under visible light, which is first reported for water-dispersed self-healing polymers. We considered the elaborated design philosophy, based on the readily available, clean, safe, and easily manipulated visible light, which can not only provide inspiration for preparing fast ambient temperature self-healing and reprocessing polymer materials with robust mechanical properties but also develop a new macroinitiator to initiate the ambient temperature polymerization of vinyl monomers.
RESUMEN
BACKGROUND: Lung dose-volume histogram (DVH) in radiotherapy could be calculated from multiple normal lung definitions. The lung dosimetric parameters generated from various approaches are significantly different. However, limited evidence shows which definition should be used to more accurately predict radiation pneumonitis (RP). We aimed to compare the RP prediction accuracy of dosimetric parameters from three lung volume methods in lung cancer patients treated with Intensity-Modulated Radiation Therapy (IMRT). METHODS: We retrospectively reviewed 183 consecutive lung cancer patients treated with IMRT from January 2014 to October 2017. The normal lungs were defined by total bilateral lung volume (Total Lung), excluding PTV (Lung-PTV) or PGTV (Lung-PGTV). V5, V20, and mean lung dose (MLD) have been extracted from three definitions. The primary endpoint was acute grade 2 or higher RP (RP2). Correlation between RP2 and dose parameters were analyzed by logistic regression. We evaluated prediction performance using area under the receiver operating characteristic curve (AUC) and normal tissue complication probability (NTCP) model. RESULTS: Twenty-six patients (14.2%) developed acute RP2 after IMRT treatment. Significant dosimetric differences were found between any 2-paired lung volumes (Ps < 0.001). To limit RP2 incidence less than 20%, the cutoff MLDs were 12.5 Gy, 14.2 Gy, and 15.0 Gy, respectively, for Lung-PTV, Lung-PGTV, and Total Lung methods. There were 54% (13% vs. 20%) and 45% (20% vs. 29%) RP2 probability variances detected at each MLD cutoff points from Lung-PTV and Lung-PGTV definitions. The best RP prediction performance was found in MLD from Lung-PTV method (AUC = 0.647), which is significantly better (P = 0.006) than the MLD from Lung-PGTV method (AUC = 0.609). CONCLUSION: There are significant differences in acute RP2 rate prediction using dosimetric parameters from various normal lung definitions. Excluding PTV from total lung volume may be more accurate and promising to predict acute symptomatic radiation pneumonitis in IMRT treated lung cancer patients.
Asunto(s)
Adenocarcinoma/radioterapia , Carcinoma de Células Escamosas/radioterapia , Neoplasias Pulmonares/radioterapia , Neumonitis por Radiación/diagnóstico , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/efectos adversos , Carcinoma Pulmonar de Células Pequeñas/radioterapia , Adenocarcinoma/patología , Carcinoma de Células Escamosas/patología , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Pronóstico , Neumonitis por Radiación/etiología , Dosificación Radioterapéutica , Estudios Retrospectivos , Carcinoma Pulmonar de Células Pequeñas/patologíaRESUMEN
Double-positive (DP) thymocytes undergo positive selection to become mature single-positive CD4+ and CD8+ T cells in response to T cell receptor (TCR) signaling. Unlike mature T cells, DP cells must respond to low-affinity self-peptide-MHC ligands before full upregulation of their surface TCR expression can occur. Thus, DP thymocytes must be more sensitive to ligands than mature T cells. A number of molecules have been found that are able to enhance the strength of the TCR signal to facilitate positive selection. However, almost all of these molecules are also active in mature T cells. Themis (thymocyte expressed molecule involved in selection) and Tespa1 (thymocyte expressed positive selection associated 1) are two recently discovered molecules essential for optimal TCR signaling and thymocyte development. A deficiency in both molecules leads to defects in positive selection. Here, we compared the relative contributions of Themis and Tespa1 to positive selection in thymocytes. We show that Tespa1 deficiency led to more limited and specific gene expression profile changes in cells undergoing positive selection. In mixed bone marrow transfer experiments, Tespa1-/- cells showed more severe defects in thymocyte development than Themis-/- cells. However, Tespa1-/- cells showed a substantial degree of homeostatic expansion and became predominant in the peripheral lymphoid organs, suggesting that Tespa1 is a thymic-specific TCR signaling regulator. This hypothesis is further supported by our observations in Tespa1 conditional knockout mice, as Tespa1 deletion in peripheral T cells did not affect TCR signaling or cell proliferation. The different regulatory effects of Tespa1 and Themis are in accordance with their nonredundant roles in thymocyte selection, during which Tespa1 and Themis double knockouts showed additive defects.