Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Environ Sci Technol ; 58(3): 1763-1770, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38258410

RESUMEN

Control of residual Al is critical, owing to its high tendency to accumulate in drinking water distribution systems and its potential risks to human health. Herein, the effects of surface properties of activated carbon (AC) on intercepting different Al species (including monomeric Al and polymeric Al species-Al13) are evaluated. The results showed that Al in the form of monomers was considerably adsorbed by AC; whereas Al in the form of polymeric Al13 was held to a much lower degree by AC, and the effluent Al concentration was even higher than that without AC. By comparing virgin AC and hydrogen thermal treated AC, the surface oxygen functional groups on the AC were proposed to play a critical role in the transformation of Al species. The oxygen functional groups on the AC surface can directly form complexes with monomeric Al, thereby inducing the binding of monomeric Al on the AC surface. However, the AC surface oxygen groups could not bind to polymeric Al13, and the interaction between AC surface oxygen groups and polymeric Al13 partially transforms Al13 into monomeric Al species, which inhibited the self-aggregation of Al13. This study aims to provide new insights into the control of residual Al in water treatment plants to ensure drinking water safety.


Asunto(s)
Agua Potable , Polímeros , Humanos , Hidróxido de Aluminio , Carbón Orgánico , Oxígeno
2.
Environ Sci Technol ; 57(30): 11251-11258, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37459399

RESUMEN

Nitrogen-containing disinfection byproducts (N-DBPs) are highly toxic DBPs in drinking water. Though, under normal conditions, NO3- could not directly participate in disinfection reactions to generate N-DBPs, here, we first found that NO3- could promote the formation of N-DBPs in corroded iron drinking water pipes. The coexistence of corrosion produced Fe(II) and iron oxides is a critical condition for the transformation of N species; meanwhile, most of the newly generated N-DBPs had aromatic fractions. The Fe-O-C bond formed between iron corrosion products and natural organic matter promoted electron transfer for the N transformation with pyrrolic N as the intermediate N species. Density functional calculation confirmed that the coexistence of Fe(II) and iron oxides effectively reduced the Gibbs free energy for NO3- reduction. ΔG of the key rate-determining step from NO* to NOH* decreased from 1.55 eV on FeOOH to 1.35 eV on Fe(II)+FeOOH. In addition, the large decrease of cell viability of the water samples from 74.3% to 45.4% further confirmed the formation of highly toxic N-DBPs. Thus, in a drinking water distribution system with corroded iron pipes, the low toxic NO3- may increase toxicity risks via N-DBP formation.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Hierro , Desinfectantes/análisis , Desinfectantes/química , Nitrógeno/análisis , Halogenación , Compuestos Ferrosos , Contaminantes Químicos del Agua/análisis
3.
Environ Sci Technol ; 57(12): 4863-4869, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36917752

RESUMEN

Perfluorooctanoic acid (PFOA) is an emerging persistent organic pollutant that is frequently detected throughout the drinking water supply system. Here, we first found that PFOA could significantly increase the formation of disinfection byproducts (DBPs) in unlined iron pipes (UIPs) during the distribution process. The increased DBPs were not due to the reaction of PFOA itself with free chlorine, but the in situ formed Fe-PFOA complex played a key role. Notably, PFOA could enhance iron release from UIPs and was greatly incorporated into the iron particles to form Fe-PFOA complex. The •OH generated by the Fe-PFOA heterogeneous reaction could break large dissolved organic matter into small molecules that had higher reactivity with chlorine. In addition, DBP precursors with more aromatic structures were favorable for forming strong Fe-π interactions with Fe-PFOA complex, resulting in more •OH for the formation of aromatic DBPs. The cytotoxicity test showed that the viability of cells exposed to DBPs from UIPs with 100 ng/L PFOA was 46.9%, while that without PFOA was 67.91%. Overall, this study provided a new perspective on the risk of PFOA, with a focus not on PFOA itself but on its potential to promote DBP-associated toxicity in iron-based drinking water distribution pipes.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección/métodos , Agua Potable/análisis , Agua Potable/química , Desinfectantes/análisis , Desinfectantes/química , Cloro , Hierro , Halogenación , Purificación del Agua/métodos , Contaminantes Químicos del Agua/análisis
4.
Environ Sci Technol ; 56(15): 10775-10784, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35876009

RESUMEN

Mn(II) oxidation by free chlorine can be applied to remove Mn(II) at water treatment plants. This reaction also results in particulate MnOx formation and accumulation in drinking water distribution systems. This study investigated the effect of Fe(III) and Al(III) hydrolysis products (mainly precipitates) on Mn(II) oxidation by free chlorine under drinking water conditions. The results showed that Fe3+ added as FeCl3 and Al(III) added as polyaluminum chloride (PACl) at tens to hundreds of micrograms per liter dramatically catalyzed Mn(II) oxidation by free chlorine. Through hydrolytic precipitation at circumneutral pH, Fe3+ and Al13 (the dominant preformed Al species in PACl) generated Fe(OH)3-like particles and Al13 aggregates, respectively, which initiated heterogeneous Mn(II) oxidation. Kinetic modeling indicated that, once some MnOx was formed, MnOx and Fe(OH)3 catalyzed the subsequent Mn(II) oxidation to an equal extent. The particles (aggregates) formed from Al13 species exhibited a weaker catalytic capacity in comparison to MnOx and Fe(OH)3 at equivalent molar concentrations. Interestingly, unlike Al13 species in PACl, Al(III) added as AlCl3 had a negligible influence on Mn(II) oxidation, even when Al(OH)3(am) precipitates were formed. The catalytic effects of Fe3+ and Al13 hydrolysis products were confirmed by experiments with natural water and finished water, and the lower Mn(II) oxidation rate was mainly attributed to organic matter.


Asunto(s)
Cloro , Agua Potable , Aluminio , Catálisis , Cloruros , Compuestos Férricos , Hidrólisis , Oxidación-Reducción
5.
Environ Sci Technol ; 56(2): 1081-1090, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34991317

RESUMEN

Phthalate esters (PAEs) are commonly released from plastic pipes in some water distribution systems. Here, we show that exposure to a low concentration (1-10 µg/L) of three PAEs (dimethyl phthalate (DMP), di-n-hexyl phthalate (DnHP), and di-(2-ethylhexyl) phthalate (DEHP)) promotes Pseudomonas biofilm formation and resistance to free chlorine. At PAE concentrations ranging from 1 to 5 µg/L, genes coding for quorum sensing, extracellular polymeric substances excretion, and oxidative stress resistance were upregulated by 2.7- to 16.8-fold, 2.1- to 18.9-fold, and 1.6- to 9.9-fold, respectively. Accordingly, more biofilm matrix was produced and the polysaccharide and eDNA contents increased by 30.3-82.3 and 10.3-39.3%, respectively, relative to the unexposed controls. Confocal laser scanning microscopy showed that PAE exposure stimulated biofilm densification (volumetric fraction increased from 27.1 to 38.0-50.6%), which would hinder disinfectant diffusion. Biofilm densification was verified by atomic force microscopy, which measured an increase of elastic modulus by 2.0- to 3.2-fold. PAE exposure also stimulated the antioxidative system, with cell-normalized superoxide dismutase, catalase, and glutathione activities increasing by 1.8- to 3.0-fold, 1.0- to 2.0-fold, and 1.2- to 1.6-fold, respectively. This likely protected cells against oxidative damage by chlorine. Overall, we demonstrate that biofilm exposure to environmentally relevant levels of PAEs can upregulate molecular processes and physiologic changes that promote biofilm densification and antioxidative system expression, which enhance biofilm resistance to disinfectants.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Biopelículas , China , Cloro/farmacología , Dibutil Ftalato , Ésteres , Ácidos Ftálicos/farmacología , Plásticos
6.
Environ Sci Technol ; 56(9): 5497-5507, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35420026

RESUMEN

Microbial Mn(II) oxidation occurs in areas with insufficient disinfectants in drinking water distribution systems. However, the overall processes of microbial-mediated Mn deposit formation are unclear. This research investigated the initial Mn(II) oxidation, deposit accumulation, and biofilm development in pipe loops fed with nondisinfected finished water for 300 days. The results show that it took 20 days for microbial Mn(II) oxidation and deposition to be initiated visibly in new pipes continuously receiving 100 µg/L Mn(II). Once started, the deposit accumulation accelerated. A pseudo-first-order kinetic model could simulate the disappearance of Mn(II) in well-mixed pipe loop water. The observed rate constant reached 2.81 h-1 [corresponding to a Mn(II) half-life of 0.25 h] after 136 days of operation. Without oxygen, Mn(II) in the water also decreased rapidly to 1.0 µg/L through adsorption to deposits, indicating that after the initial microbial formation of MnOx, subsequent MnOx accumulation was attributable to a combination of microbial and physicochemical processes. Compared to the no-Mn condition, Mn(II) input resulted in 1 order of magnitude increase in biofilm formation. This study sheds light on the increasingly rapid processes of Mn accumulation on the inner surfaces of water pipes resulting from the biological activity of Mn(II)-oxidizing biofilms and the build-up of MnOx with strong adsorption capacity.


Asunto(s)
Desinfectantes , Agua Potable , Biopelículas , Manganeso , Oxidación-Reducción
7.
Environ Sci Technol ; 56(17): 12278-12287, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35976066

RESUMEN

The oxidation of residual Mn(II) in finished water can lead to MnOx deposit formation in drinking water pipes. Previous work has illustrated that microbes readily cause Mn deposit build-up in nondisinfected pipes. Here, we investigated how disinfectant type and dose affected Mn(II) oxidation and MnOx accumulation through long-term pipe experiments using water produced by a full-scale water treatment plant. The results showed that Mn(II) oxidation initiated quickly in the new pipes chlorinated with 1.0 mg/L free chlorine. After 130 days of MnOx accumulation, 100 µg/L Mn(II) in water could drop to 1.0 µg/L within 1.5 h, resulting from autocatalytic Mn(II) oxidation and Mn(II) adsorption by MnOx deposits accumulated on pipe walls. In contrast to chlorination, chloramination (1.0 mg/L Cl2) caused almost no MnOx accumulation during the entire study period. The underlying mechanism was probably that monochloramine inhibited microbial Mn(II) oxidation without causing significant abiotic Mn(II) oxidation like free chlorine. A low free chlorine dose (0.3 mg/L) also reduced Mn deposit formation by mass but to a lesser extent than chloramination. After disinfection (chlorination or chloramination) was discontinued for days, biotic Mn(II) oxidation occurred, and this process was inhibited again once disinfection was resumed. In addition, Fe(III) of 200 µg/L enhanced the stability of MnOx accumulated on pipe surfaces, while humic acid induced MnOx deposit resuspension. Overall, this study highlighted the regulating role of disinfectants in MnOx formation and provided insights into developing appropriate disinfection strategies for Mn deposit control.


Asunto(s)
Desinfectantes , Agua Potable , Purificación del Agua , Cloraminas , Cloro , Desinfección/métodos , Compuestos Férricos , Manganeso , Purificación del Agua/métodos
8.
J Environ Sci (China) ; 110: 92-98, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34593198

RESUMEN

Many problems in drinking water distribution systems (DWDSs) are caused by microbe, such as biofilm formation, biocorrosion and opportunistic pathogens growth. More iron release from corrosion scales may induce red water. Biofilm played great roles on the corrosion. The iron-oxidizing bacteria (IOB) promoted corrosion. However, when iron-reducing bacteria (IRB) and nitrate-reducing bacteria (NRB) became the main bacteria in biofilm, they could induce iron redox cycling in corrosion process. This process enhanced the precipitation of iron oxides and formation of more Fe3O4 in corrosion scales, which inhibited corrosion effectively. Therefore, the IRB and NRB in the biofilm can reduce iron release and red water occurrence. Moreover, there are many opportunistic pathogens in biofilm of DWDSs. The opportunistic pathogens growth in DWDSs related to the bacterial community changes due to the effects of micropollutants. Micropollutants increased the number of bacteria with antibiotic resistance genes (ARGs). Furthermore, extracellular polymeric substances (EPS) production was increased by the antibiotic resistant bacteria, leading to greater bacterial aggregation and adsorption, increasing the chlorine-resistance capability, which was responsible for the enhancement of the particle-associated opportunistic pathogens in DWDSs. Moreover, O3-biological activated carbon filtration-UV-Cl2 treatment could be used to control the iron release, red water occurrence and opportunistic pathogens growth in DWDSs.


Asunto(s)
Agua Potable , Biopelículas , Cloro , Corrosión , Microbiología del Agua , Abastecimiento de Agua
9.
J Environ Sci (China) ; 110: 12-20, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34593183

RESUMEN

The membrane fouling caused by extracellular organic matter (EOM) and algal cells and organic matter removal of two typical cyanobacteria (M. aeruginosa and Pseudoanabaena sp.) during ultrafiltration (UF) process were studied in this work. The results showed that EOM had a broad molecular weight (Mw) distribution and the irreversible membrane fouling was basically caused by EOM. Moreover, humic acid and microbial metabolites were major components of EOM of two typical cyanobacteria. Since EOM could fill the voids of cake layers formed by the algal cells, EOM and algal cells played synergistic roles in membrane fouling. Fourier transform infrared spectroscopy analysis indicated that the CH2 and CH3 chemical bonds may play an important role in membrane fouling caused by EOM. Interestingly, the cake layer formed by the algal cells could trap the organic matter produced by algae and alleviate some irreversible membrane fouling. The results also showed that although the cake layer formed by the algal cells cause severe permeate flux decline, it could play a double interception role with UF membrane and increase organic matter removal efficiency. Therefore, when using UF to treat algae-laden water, the balance of membrane fouling and organic matter removal should be considered to meet the needs of practical applications.


Asunto(s)
Cianobacterias , Microcystis , Purificación del Agua , Membranas Artificiales , Ultrafiltración
10.
Environ Sci Technol ; 54(10): 6142-6151, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32338882

RESUMEN

The occurrence of aluminum in scales on lead pipes is common. This study aimed to identify factors that influence Al accumulation on oxidized lead surfaces and to determine whether the presence of Al impacts Pb release from corrosion products to water. Al accumulation and Pb release were monitored both with and without the addition of phosphate as a corrosion inhibitor. Pb coupons with corrosion scales were exposed to chlorinated water for up to 198 days to investigate Al accumulation and Pb release. Al accumulation was facilitated by Pb corrosion products, but its accumulation was inhibited by phosphate addition. During the study period, the formation of Al deposits did not affect Pb release when phosphate was absent. In an Al-free system, the addition of 1.0 mg/L phosphate (as P) lowered the dissolved Pb concentration below 1.0 µg/L. In a system containing 200 µg/L Al, the emergence of phosphate's effect on Pb control was delayed, and the dissolved Pb concentration decreased but stabilized at a higher value (10-12 µg/L) than in the Al-free system. Phosphohedyphane (Ca2Pb3(PO4)3Cl) was formed in all phosphate-containing systems, and PbO2 was formed independent of phosphate addition. The effect of Al on Pb release was probably related to its influence on the composition and morphology of Pb-containing minerals on coupon surfaces. The laboratory study has unavoidable limitations in its ability to simulate all conditions in real lead service lines, but this study still highlights the importance of considering the influence of Al when designing Pb corrosion control strategies.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua/análisis , Aluminio/análisis , Corrosión , Abastecimiento de Agua
11.
Environ Sci Technol ; 54(3): 1963-1972, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31935075

RESUMEN

The chemical oxidation of dissolved Mn(II) to Mn(III/IV) oxides (MnOx) can lead to the accumulation of Mn deposits in drinking water distribution systems. However, Mn(II) oxidation by free chlorine is quite slow under mild conditions (e.g., pH 7.7 and 1.0 mg/L Cl2). This study found a significant role for Cu(II) in Mn(II) oxidation under conditions relevant to the supply of chlorinated drinking water. At pH 7.7, dissolved Cu(II) accelerated Mn(II) oxidation more than 10 times with a dose of 20 µg/L. Solid characterization revealed that during Mn(II) oxidation, Cu(II) adsorbed to freshly formed MnOx and produced Mn-Cu mixtures (denoted as MnOx-Cu(II)). An autocatalytic model for the reaction kinetics suggested that the freshly formed MnOx-Cu(II) had a much higher catalytic activity than that of pure MnOx. Solid CuO also catalyzed Mn(II) oxidation, and kinetic modeling indicated that after an initial oxidation of Mn(II) facilitated by the CuO surface, the freshly formed MnOx-Cu(II) on CuO surface played the dominant role in accelerating further Mn(II) oxidation. This study indicates a high potential for the formation of Mn oxides at locations in a drinking water distribution system or in premise plumbing where both Mn(II) and Cu(II) are available. It provides insights into the co-occurrence of other metals with Mn deposits that is frequently observed in distribution systems.


Asunto(s)
Agua Potable , Cloro , Cinética , Manganeso , Compuestos de Manganeso , Oxidación-Reducción , Óxidos
12.
J Environ Sci (China) ; 87: 331-340, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31791506

RESUMEN

This study profiled the bacterial community variations of water from four water treatment systems, including coagulation, sedimentation, sand filtration, ozonation-biological activated carbon filtration (O3-BAC), disinfection, and the tap water after the distribution process in eastern China. The results showed that different water treatment processes affected the bacterial community structure in different ways. The traditional treatment processes, including coagulation, sedimentation and sand filtration, reduced the total bacterial count, while they had little effect on the bacterial community structure in the treated water (before disinfection). Compared to the traditional treatment process, O3-BAC reduced the relative abundance of Sphingomonas in the finished water. In addition, ozonation may play a role in reducing the relative abundance of Mycobacterium. NaClO and ClO2 had different effects on the bacterial community in the finished water. The relative abundance of some bacteria (e.g. Flavobacterium, Phreatobacter and Porphyrobacter) increased in the finished water after ClO2 disinfection. The relative abundance of Mycobacterium and Legionella, which have been widely reported as waterborne opportunistic pathogens, increased after NaClO disinfection. In addition, some microorganisms proliferated and grew in the distribution system, which could lead to turbidity increases in the tap water. Compared to those in the finished water, the relative abundance of Sphingomonas, Hyphomicrobium, Phreatobacter, Rheinheimera, Pseudomonas and Acinetobacter increased in the tap water disinfected with NaClO, while the relative abundance of Mycobacterium increased in the tap water disinfected with ClO2. Overall, this study provided the detailed variation in the bacterial community in the drinking water system.


Asunto(s)
Agua Potable/microbiología , Abastecimiento de Agua/estadística & datos numéricos , China , Desinfección , Monitoreo del Ambiente , Purificación del Agua/métodos
13.
J Environ Sci (China) ; 85: 147-155, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31471021

RESUMEN

Polymer hydrogel-based materials have been shown to act as novel Fenton catalysts for water treatment, but the rational design of hydrogel-based catalysts with good stability has been a great challenge. To increase the stability and activity of polymer-based Fenton catalysts, uniform urchin-like α-Fe2O3 was grown in situ in a PVA carrier matrix here. PVA molecules promoted the growth of urchin-like α-Fe2O3, and then the PVA hydrogel acted as a barrier and carrier to reduce agglomeration. Through coordination by hydroxyl groups, PVA had good combination with Fe ions and α-Fe2O3. The formation of Fe-O-C bonds between iron oxides and polymers was reported for the first time, enhancing the material stability during catalysis. Under higher PVA concentrations, the resulting composite hydrogel could generate more ˙OH due to the increase in the number of active sites because of the hairy urchin-like structure. In tetracycline degradation through a heterogeneous Fenton reaction, the resulting material had good catalytic activity from pH 2 to pH 10 with low iron leaching, good reusability and remained at a level of nearly 90% after five consecutive cycles. Density functional theory calculations were used to further prove the mechanism of structural change of the iron oxides. The HOMO and LUMO energies of the iron oxides changed from 5.428 and 4.899 eV to 5.926 and 5.310 eV, indicating that the presence of PVA could influence the charge of the iron atom. The results provide new insights into the preparation of polymer hydrogel-based heterogeneous Fenton catalysts with enhanced stability for water treatment.


Asunto(s)
Hidrogeles/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Compuestos Férricos , Peróxido de Hidrógeno/química , Polímeros
14.
J Environ Sci (China) ; 78: 81-91, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30665659

RESUMEN

Hydrogels have attracted large attention in wastewater treatment fields due to their low-cost and good interaction with pollutants, among which novel double network hydrogel is an outstanding class. To expand the application of double network hydrogel in water treatment, in this study, eco-friendly physically cross-linked double network polymer hydrogel beads (DAP) are prepared and studied in depth on the mechanism of Methylene Blue (MB) adsorption; and then the polymer hydrogels are further functionalized by inorganic materials. MB adsorption on DAP favors alkaline condition which is due to the increase of electrostatic attraction and adsorption site, and it reaches equilibrium within 10 hr, which is faster than that of the single network hydrogel beads (SAP). Through thermodynamics study, the process shows to be an exothermic and spontaneous process. The adsorption isotherms are well fitted by Langmuir model, with a maximum monolayer adsorption capacity of 1437.48 mg/g, which is larger than SAP (1255.75 mg/g). After being functionalized with common inorganic materials including activated carbon, Fe3O4 and graphene oxide (GO), the composites show to have larger pore sizes and have obvious increases in adsorption capacity especially the one contains GO. Then the composites contains Fe3O4 are used as heterogeneous Fenton catalyst which shows to have excellent performance in MB degradation. The results indicate the potential of polymer double network to be functionalized in environmental areas.


Asunto(s)
Colorantes/química , Hidrogeles/química , Polímeros/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Azul de Metileno
15.
Environ Monit Assess ; 190(7): 388, 2018 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-29886560

RESUMEN

Heavy metal accumulation and potential releases from loose deposits in drinking water distribution system (DWDS) can have critical impacts on drinking water safety, but the associated risks have not been sufficiently evaluated. In this work, the potential biological toxicity of heavy metals in loose deposits was calculated based on consensus-based sediment quality guidelines, and the effects of some of the main water quality parameters, such as the pH and bicarbonate and phosphate content, on the release behaviors of pre-accumulated heavy metals were investigated. The results showed that heavy metals (Cu, As, Cr, Pb, and Cd) significantly accumulated in all the samples, but the contents of the heavy metals were multiple magnitudes lower than the Fe and Mn contents. The potential biotoxicity of As and Cu was relatively high, but the biotoxicity of Cd was negligible. The water quality can significantly influence the release of heavy metals from loose deposits. As the pH increased from 7.0 to 9.0, the release of As and Cr obviously increased. The release of As, Cu, Pb, and Cr also accelerated with the addition of phosphate (from 1 to 5 mg/L). In contrast to the trends for the pH and phosphate, variations in the bicarbonate content did not have a significant influence on the release of As and Cr. The release ratios of heavy metals in the samples were very low, and there was not a correlation between the release rate of the heavy metals in the loose deposits and their potential biotoxicity.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , China , Agua Potable/química , Sedimentos Geológicos/química , Calidad del Agua
16.
J Environ Sci (China) ; 73: 107-116, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30290859

RESUMEN

Dye wastewater containing heavy metal ions is a common industrial effluent with complex physicochemical properties. The treatment of metal-dye binary wastewater is difficult. In this work, a novel in-situ ferrite process (IFP) was applied to treat Methylene Blue (MB)-Cu(II) binary wastewater, and the operational parameters were optimized for MB removal. Results showed that the optimum operating conditions were OH/M of 1.72, Cu2+/Fe2+ ratio of 1/2.5, reaction time of 90min, aeration intensity of 320mL/min, and reaction temperature of 40°C. Moreover, the presence of Ca2+ and Mg2+ moderately influenced the MB removal. Physical characterization results indicated that the precipitates yielded in IFP presented high surface area (232.50m2/g) and a multi-porous structure. Based on the Langmuir model, the maximum adsorption capacity toward MB was 347.82mg/g for the precipitates produced in IFP, which outperformed most other adsorbents. Furthermore, IFP rapidly sequestered MB with removal efficiency 5 to 10 times greater than that by general ferrite adsorption, which suggested a strong enhancement of MB removal by IFP. The MB removal process by IFP showed two different high removal stages, each with a corresponding removal mechanism. In the first brief stage (<5min), the initial high MB removal (~95%) was achieved by predominantly electrostatic interactions. Then the sweep effect and encapsulation were dominant in the second longer stage.


Asunto(s)
Azul de Metileno/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Adsorción , Compuestos Férricos/química
17.
J Environ Sci (China) ; 42: 142-151, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27090705

RESUMEN

Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7.


Asunto(s)
Aluminio/química , Agua Potable/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Aluminio/análisis , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/análisis
18.
Water Res ; 254: 121339, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38432003

RESUMEN

Loose deposit particles in drinking water distribution system commonly exist as mixtures of metal oxides, organic materials, bacteria, and extracellular secretions. In addition to their turbidity-causing effects, the hazards of such particles in drinking water are rarely recognized. In this study, we found that trace per- and polyfluoroalkyl substances (PFASs) could dramatically promote the formation of disinfection byproducts (DBPs) by triggering the release of particle-bound organic matter. Carboxylic PFASs have a greater ability to increase chloroacetic acid than sulfonic PFASs, and PFASs with longer chains have a greater ability to increase trichloromethane release than shorter-chain PFASs. Characterization by organic carbon and organic nitrogen detectors and Fourier transform ion cyclotron resonance mass spectrometry revealed that the released organic matter was mainly composed of proteins, carbohydrates, lignin, and condensed aromatic structures, which are the main precursors for the formation of DBPs, particularly highly toxic aromatic DBPs. After the release of organic matter, the particles exhibit a decrease in surface functional groups, an increase in surface roughness, and a decrease in particle size. The findings provide new insights into the risks of loose deposits and PFASs in drinking water, not only on PFASs per se but also on its effect of increasing toxic DBPs.


Asunto(s)
Desinfectantes , Agua Potable , Fluorocarburos , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección/métodos , Desinfectantes/análisis , Agua Potable/análisis , Purificación del Agua/métodos , Halogenación , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis
19.
Water Res ; 255: 121429, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38503184

RESUMEN

Given the complexity of dissolved organic matter (DOM) and its interactions with coagulant chemicals, the mechanisms of DOM removal by aluminum (Al) coagulants remains a significant unknown. In this study, six test waters containing DOM with molecular weight (MW, <1 kDa, 1-10 kDa and >10 kDa) and hydrophobicity (hydrophilic, transphilic and hydrophobic) were prepared and coagulated with Al0, Al13 and Al30. The molecular-level characteristics of DOM molecules that were removed or resistant to removal by Al species were analyzed using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The results showed that at the molecular level, saturated and reduced tannins and lignin-like compounds containing abundant carboxyl groups exhibited higher coagulation efficiency. Unsaturated and oxidized lipids, protein-like, and carbohydrates compounds were relatively resistant to Al coagulation due to their higher polarity and lower content of carboxyl groups. Al13 removed molecules across a wider range of molecular weights than Al0 and Al30, thus the DOC removal efficiency of Al13 was the highest. This study furthers the understanding of interactions between Al species and DOM, and provides scientific insights on the operation of water treatment plants to improve control of DOM.

20.
Sci Total Environ ; 920: 171001, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38365033

RESUMEN

Manganese(II) (Mn(II)) and bromide (Br-) are common in natural waters. This study investigated the effect of in-situ Mn(II) oxidation and preformed MnOx on the brominated trihalomethane (Br-THM) formation during chlorination of bromide-containing waters. The results showed Br-THM formation could be substantially inhibited by in-situ Mn(II) oxidation, but the addition of preformed MnOx had limited influence on Br-THM formation during chlorination of bromide-containing waters. Analysis of bromine species showed that about 30 % bromine species were incorporated into the MnOx particles and formed MnOx-Br during the in-situ Mn(II) oxidation process. Consequently, the availability of reactive bromine species for the reaction with dissolved organic matter (DOM) reduced, leading to less Br-THM formation. X-ray diffraction (XRD) analysis of in-situ Mn(II) oxidation product indicated the presence of Br- decreased the crystallinity of Mn oxides, verifying the bromine species entered MnOx crystal. However, the adsorptive uptake of bromine species by preformed MnOx was negligible and had no impact on Br-THM formation. Inhibition rate of Mn(II) oxidation on THM formation decreased with increasing specific ultraviolet absorbance (SUVA254) value of filtered water, showing SUVA254 could be a good indicator of DOM competition ability for oxidant with Mn(II). In addition, Excitation/Emission Matrix indicated that Mn(II) could form complexes with humic substances, which might also retard the reaction between humic substances and oxidant to form Br-THMs. This study highlighted the inhibiting effect of in-situ Mn(II) oxidation on Br-THM formation during chlorination of bromide-containing waters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA