Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biophys J ; 121(7): 1276-1288, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35183522

RESUMEN

Polymerase chain reaction (PCR) is a powerful tool to diagnose infectious diseases. Uracil DNA glycosylase (UDG) is broadly used to remove carryover contamination in PCR. However, UDG can contribute to false negative results when not inactivated completely, leading to DNA degradation during the amplification step. In this study, we designed novel thermolabile UDG derivatives by supercomputing molecular dynamic simulations and residual network analysis. Based on enzyme activity analysis, thermolability, thermal stability, and biochemical experiments of Escherichia coli-derived UDG and 22 derivatives, we uncovered that the UDG D43A mutant eliminated the false negative problem, demonstrated high efficiency, and offered great benefit for use in PCR diagnosis. We further obtained structural and thermodynamic insights into the role of the D43A mutation, including perturbed protein structure near D43; weakened pairwise interactions of D43 with K42, N46, and R80; and decreased melting temperature and native fraction of the UDG D43A mutant compared with wild-type UDG.


Asunto(s)
Escherichia coli , Uracil-ADN Glicosidasa , Escherichia coli/metabolismo , Mutación , Uracil-ADN Glicosidasa/química , Uracil-ADN Glicosidasa/genética , Uracil-ADN Glicosidasa/metabolismo
2.
Molecules ; 26(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208385

RESUMEN

African swine fever virus (ASFV) causes a highly contagious and severe hemorrhagic viral disease with high mortality in domestic pigs of all ages. Although the virus is harmless to humans, the ongoing ASFV epidemic could have severe economic consequences for global food security. Recent studies have found a few antiviral agents that can inhibit ASFV infections. However, currently, there are no vaccines or antiviral drugs. Hence, there is an urgent need to identify new drugs to treat ASFV. Based on the structural information data on the targets of ASFV, we used molecular docking and machine learning models to identify novel antiviral agents. We confirmed that compounds with high affinity present in the region of interest belonged to subsets in the chemical space using principal component analysis and k-means clustering in molecular docking studies of FDA-approved drugs. These methods predicted pentagastrin as a potential antiviral drug against ASFVs. Finally, it was also observed that the compound had an inhibitory effect on AsfvPolX activity. Results from the present study suggest that molecular docking and machine learning models can play an important role in identifying potential antiviral drugs against ASFVs.


Asunto(s)
Virus de la Fiebre Porcina Africana/efectos de los fármacos , Fiebre Porcina Africana/tratamiento farmacológico , Antivirales/química , Antivirales/farmacología , Aprendizaje Automático/normas , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Secuencia de Aminoácidos , Animales , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Pentagastrina/química , Pentagastrina/farmacología , Porcinos , Proteínas Virales/química , Proteínas Virales/metabolismo
3.
J Clin Microbiol ; 54(1): 216-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26560537

RESUMEN

During an outbreak of foot-and-mouth disease (FMD), real-time reverse transcription-PCR (rRT-PCR) is the most commonly used diagnostic method to detect viral RNA. However, while this assay is often conducted during the outbreak period, there is an inevitable risk of carryover contamination. This study shows that the carryover contamination can be prevented by the use of target-specific restriction endonuclease in that assay.


Asunto(s)
Enzimas de Restricción del ADN/metabolismo , Descontaminación/métodos , Contaminación de Equipos , Virus de la Fiebre Aftosa/aislamiento & purificación , Fiebre Aftosa/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Fiebre Aftosa/epidemiología
4.
Biotechnol Bioeng ; 113(12): 2544-2552, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27241141

RESUMEN

A polymerase chain reaction (PCR) using a thermostable DNA polymerase is the most widely applied method in many areas of research, including life sciences, biotechnology, and medical sciences. However, a conventional PCR incurs an amplification of undesired genes mainly owing to non-specifically annealed primers and the formation of a primer-dimer complex. Herein, we present the development of a Taq DNA polymerase-specific repebody, which is a small-sized protein binder composed of leucine rich repeat (LRR) modules, as a thermolabile inhibitor for a precise and accurate gene amplification by PCR. We selected a repebody that specifically binds to the DNA polymerase through a phage display, and increased its affinity to up to 10 nM through a modular evolution approach. The repebody was shown to effectively inhibit DNA polymerase activity at low temperature and undergo thermal denaturation at high temperature, leading to a rapid and full recovery of the polymerase activity, during the initial denaturation step of the PCR. The performance and utility of the repebody was demonstrated through an accurate and efficient amplification of a target gene without nonspecific gene products in both conventional and real-time PCRs. The repebody is expected to be effectively utilized as a thermolabile inhibitor in a PCR. Biotechnol. Bioeng. 2016;113: 2544-2552. © 2016 Wiley Periodicals, Inc.


Asunto(s)
ADN/genética , Amplificación de Genes/genética , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Reacción en Cadena de la Polimerasa/métodos , Secuencias Repetitivas de Aminoácido/genética , Polimerasa Taq/genética , Polimerasa Taq/antagonistas & inhibidores
5.
Nucleic Acids Res ; 42(9): 5846-62, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24692662

RESUMEN

MUS81 shares a high-degree homology with the catalytic XPF subunit of the XPF-ERCC1 endonuclease complex. It is catalytically active only when complexed with the regulatory subunits Mms4 or Eme1 in budding and fission yeasts, respectively, and EME1 or EME2 in humans. Although Mus81 complexes are implicated in the resolution of recombination intermediates in vivo, recombinant yeast Mus81-Mms4 and human MUS81-EME1 isolated from Escherichia coli fail to cleave intact Holliday junctions (HJs) in vitro. In this study, we show that human recombinant MUS81-EME2 isolated from E. coli cleaves HJs relatively efficiently, compared to MUS81-EME1. Furthermore, MUS81-EME2 catalyzed cleavage of nicked and gapped duplex deoxyribonucleic acids (DNAs), generating double-strand breaks. The presence of a 5' phosphate terminus at nicks and gaps rendered DNA significantly less susceptible to the cleavage by MUS81-EME2 than its absence, raising the possibility that this activity could play a role in channeling damaged DNA duplexes that are not readily repaired into the recombinational repair pathways. Significant differences in substrate specificity observed with unmodified forms of MUS81-EME1 and MUS81-EME2 suggest that they play related but non-overlapping roles in DNA transactions.


Asunto(s)
ADN Cruciforme/química , Proteínas de Unión al ADN/química , Endodesoxirribonucleasas/química , Endonucleasas/química , Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , División del ADN , Escherichia coli , Humanos , Cinética , Complejos Multiproteicos/química , Subunidades de Proteína/química , Especificidad por Sustrato
6.
J Biol Chem ; 287(12): 8675-87, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22235122

RESUMEN

Dna2 and Rad27 (yeast Fen1) are the two endonucleases critical for Okazaki fragment processing during lagging strand DNA synthesis that have been shown to interact genetically and physically. In this study, we addressed the functional consequences of these interactions by examining whether purified Rad27 of Saccharomyces cerevisiae affects the enzymatic activity of Dna2 and vice versa. For this purpose, we constructed Rad27DA (catalytically defective enzyme with an Asp to Ala substitution at amino acid 179) and found that it significantly stimulated the endonuclease activity of wild type Dna2, but failed to do so with Dna2Δ405N that lacks the N-terminal 405 amino acids. This was an unexpected finding because dna2Δ405N cells were still partially suppressed by overexpression of rad27DA in vivo. Further analyses revealed that Rad27 is a trans-autostimulatory enzyme, providing an explanation why overexpression of Rad27, regardless of its catalytic activity, suppressed dna2 mutants as long as an endogenous wild type Rad27 is available. We found that the C-terminal 16-amino acid fragment of Rad27, a highly polybasic region due to the presence of multiple positively charged lysine and arginine residues, was sufficient and necessary for the stimulation of both Rad27 and Dna2. Our findings provide further insight into how Dna2 and Rad27 jointly affect the processing of Okazaki fragments in eukaryotes.


Asunto(s)
ADN Helicasas/metabolismo , ADN/genética , Regulación hacia Abajo , Endonucleasas de ADN Solapado/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , ADN Helicasas/genética , Replicación del ADN , Endonucleasas de ADN Solapado/genética , Regulación Fúngica de la Expresión Génica , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Unión Proteica , Proteínas de Saccharomyces cerevisiae/genética
7.
Nucleic Acids Res ; 38(5): 1583-95, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20007605

RESUMEN

The non-essential VTS1 gene of Saccharomyces cerevisiae is highly conserved in eukaryotes and encodes a sequence- and structure-specific RNA-binding protein. The Vts1 protein has been implicated in post-transcriptional regulation of a specific set of mRNAs that contains its-binding site at their 3'-untranslated region. In this study, we identified VTS1 as a multi-copy suppressor of dna2-K1080E, a lethal mutant allele of DNA2 that lacks DNA helicase activity. The suppression was allele-specific, since overexpression of Vts1 did not suppress the temperature-dependent growth defects of dna2Delta405N devoid of the N-terminal 405-amino-acid residues. Purified recombinant Vts1 stimulated the endonuclease activity of wild-type Dna2, but not the endonuclease activity of Dna2Delta405N, indicating that the activation requires the N-terminal domain of Dna2. Stimulation of Dna2 endonuclease activity by Vts1 appeared to be the direct cause of suppression, since the multi-copy expression of Dna2-K1080E suppressed the lethality observed with its single-copy expression. We found that vts1Delta dna2Delta405N and vts1Deltadna2-7 double mutant cells displayed synergistic growth defects, in support of a functional interaction between two genes. Our results provide both in vivo and in vitro evidence that Vts1 is involved in lagging strand synthesis by modulating the Dna2 endonuclease activity that plays an essential role in Okazaki fragment processing.


Asunto(s)
ADN Helicasas/metabolismo , ADN/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Alelos , Núcleo Celular/química , ADN Helicasas/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Mutación , Proteínas de Unión al ARN/análisis , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética , Supresión Genética
8.
FEBS J ; 283(23): 4247-4262, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27759916

RESUMEN

Highly conserved eukaryotic histones are polybasic proteins that package DNA into nucleosomes, a building block of chromatin, allowing extremely long DNA molecules to form compact and discrete chromosomes. The histone N-terminal tails that extend from the nucleosome core act as docking sites for many proteins through diverse post-translational modifications, regulating various DNA transactions. In this report, we present evidence that the nucleosomes can positively regulate the enzymatic activity of Rad27 (yeast Fen1), a major processing enzyme important for Okazaki fragment in eukaryotes. We found that individual histones, histone octamers, and nucleosomes are able to stimulate Rad27 in a manner dependent on the N-terminal tails of histones. Kinetic analyses suggest that an increase in catalytic efficiency of Rad27 was mainly due to increased affinity between DNA substrates and Rad27. It appears that the physical interaction in vivo between histones and Rad27 results in the enrichment of Rad27 in the vicinity of chromatin, increasing the availability of Rad27 for various DNA metabolisms. These results indicate that nucleosomes are not a mere structural component of chromatin, but an active regulator of DNA metabolisms that serves to ensure the efficient and faithful processing of structural intermediates arising during DNA transactions.


Asunto(s)
ADN de Hongos/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Western Blotting , Cromatina/genética , Cromatina/metabolismo , ADN de Hongos/genética , Endonucleasas de ADN Solapado/genética , Histonas/genética , Histonas/metabolismo , Cinética , Mutación , Nucleosomas/genética , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato
9.
FEBS J ; 279(13): 2412-30, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22551069

RESUMEN

The yeast heterodimeric Mus81-Mms4 complex possesses a structure-specific endonuclease activity that is critical for the restart of stalled replication forks and removal of toxic recombination intermediates. Previously, we reported that Mus81-Mms4 and Rad27 (yeast FEN1, another structure-specific endonuclease) showed mutual stimulation of nuclease activity. In this study, we investigated the interactions between human FEN1 and MUS81-EME1 or MUS81-EME2, the human homologs of the yeast Mus81-Mms4 complex. We found that both MUS81-EME1 and MUS81-EME2 increased the activity of FEN1, but FEN1 did not stimulate the activity of MUS81-EME1/EME2. The MUS81 subunit alone and its N-terminal half were able to bind to FEN1 and stimulate its endonuclease activity. A truncated FEN1 fragment lacking the C-terminal region that retained catalytic activity was not stimulated by MUS81. Michaelis-Menten kinetic analysis revealed that MUS81 increased the interaction between FEN1 and its substrates, resulting in increased turnover. We also showed that, after DNA damage in human cells, FEN1 co-localizes with MUS81. These findings indicate that the human proteins and yeast homologs act similarly, except that the human FEN1 does not stimulate the nuclease activities of MUS81-EME1 or MUS81-EME2. Thus, the mammalian MUS81 complexes and FEN1 collaborate to remove the various flap structures that arise during many DNA transactions, including Okazaki fragment processing.


Asunto(s)
Daño del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Western Blotting , Cartilla de ADN/química , Proteínas de Unión al ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Endodesoxirribonucleasas/genética , Endonucleasas/genética , Endonucleasas de ADN Solapado/genética , Técnica del Anticuerpo Fluorescente , Humanos , Cinética , Plásmidos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinación Genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA