Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Plant Physiol ; 193(1): 689-707, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37144828

RESUMEN

Although much is known about the responses of model plants to microbial features, we still lack an understanding of the extent of variation in immune perception across members of a plant family. In this work, we analyzed immune responses in Citrus and wild relatives, surveying 86 Rutaceae genotypes with differing leaf morphologies and disease resistances. We found that responses to microbial features vary both within and between members. Species in 2 subtribes, the Balsamocitrinae and Clauseninae, can recognize flagellin (flg22), cold shock protein (csp22), and chitin, including 1 feature from Candidatus Liberibacter species (csp22CLas), the bacterium associated with Huanglongbing. We investigated differences at the receptor level for the flagellin receptor FLAGELLIN SENSING 2 (FLS2) and the chitin receptor LYSIN MOTIF RECEPTOR KINASE 5 (LYK5) in citrus genotypes. We characterized 2 genetically linked FLS2 homologs from "Frost Lisbon" lemon (Citrus ×limon, responsive) and "Washington navel" orange (Citrus ×aurantium, nonresponsive). Surprisingly, FLS2 homologs from responsive and nonresponsive genotypes were expressed in Citrus and functional when transferred to a heterologous system. "Washington navel" orange weakly responded to chitin, whereas "Tango" mandarin (C. ×aurantium) exhibited a robust response. LYK5 alleles were identical or nearly identical between the 2 genotypes and complemented the Arabidopsis (Arabidopsis thaliana) lyk4/lyk5-2 mutant with respect to chitin perception. Collectively, our data indicate that differences in chitin and flg22 perception in these citrus genotypes are not the results of sequence polymorphisms at the receptor level. These findings shed light on the diversity of perception of microbial features and highlight genotypes capable of recognizing polymorphic pathogen features.


Asunto(s)
Arabidopsis , Citrus , Rutaceae , Citrus/metabolismo , Rutaceae/metabolismo , Flagelina/genética , Flagelina/metabolismo , Arabidopsis/genética , Quitina/metabolismo , Receptores Inmunológicos/metabolismo , Percepción , Enfermedades de las Plantas/microbiología
2.
New Phytol ; 240(1): 382-398, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37532924

RESUMEN

Plants interact with arbuscular mycorrhizal fungi (AMF) and in doing so, change transcript levels of many miRNAs and their targets. However, the identity of an Argonaute (AGO) that modulates this interaction remains unknown, including in Nicotiana attenuata. We examined how the silencing of NaAGO1/2/4/7/and 10 by RNAi influenced plant-competitive ability under low-P conditions when they interact with AMF. Furthermore, the roles of seven miRNAs, predicted to regulate signaling and phosphate homeostasis, were evaluated by transient overexpression. Only NaAGO7 silencing by RNAi (irAGO7) significantly reduced the competitive ability under P-limited conditions, without changes in leaf or root development, or juvenile-to-adult phase transitions. In plants growing competitively in the glasshouse, irAGO7 roots were over-colonized with AMF, but they accumulated significantly less phosphate and the expression of their AMF-specific transporters was deregulated. Furthermore, the AMF-induced miRNA levels were inversely regulated with the abundance of their target transcripts. miRNA overexpression consistently decreased plant fitness, with four of seven-tested miRNAs reducing mycorrhization rates, and two increasing mycorrhization rates. Overexpression of Na-miR473 and Na-miRNA-PN59 downregulated targets in GA, ethylene, and fatty acid metabolism pathways. We infer that AGO7 optimizes competitive ability and colonization by regulating miRNA levels and signaling pathways during a plant's interaction with AMF.


Asunto(s)
MicroARNs , Micorrizas , Nicotiana/metabolismo , Micorrizas/fisiología , Raíces de Plantas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fosfatos/metabolismo
3.
Mol Plant Microbe Interact ; 35(12): 1067-1080, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35952362

RESUMEN

Climate change is predicted to increase the prevalence of vector-borne disease due to expansion of insect populations. 'Candidatus Liberibacter solanacearum' is a phloem-limited pathogen associated with multiple economically important diseases in solanaceous crops. Little is known about the strategies and pathogenicity factors 'Ca. L. solanacearum' uses to colonize its vector and host. We determined the 'Ca. L. solanacearum' effector repertoire by predicting proteins secreted by the general secretory pathway across four different 'Ca. L. solanacearum' haplotypes, investigated effector localization in planta, and profiled effector expression in the vector and host. The localization of 'Ca. L. solanacearum' effectors in Nicotiana spp. revealed diverse eukaryotic subcellular targets. The majority of tested effectors were unable to suppress plant immune responses, indicating they possess unique activities. Expression profiling in tomato and the psyllid Bactericera cockerelli indicated 'Ca. L. solanacearum' differentially interacts with its host and vector and can switch effector expression in response to these environments. This study reveals 'Ca. L. solanacearum' effectors possess complex expression patterns, target diverse host organelles and the majority are unable to suppress host immune responses. A mechanistic understanding of 'Ca. L. solanacearum' effector function will reveal novel targets and provide insight into phloem biology. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Hemípteros , Rhizobiaceae , Animales , Rhizobiaceae/fisiología , Hemípteros/microbiología , Liberibacter , Enfermedades de las Plantas/microbiología
4.
Mol Cell Proteomics ; 19(12): 1936-1952, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32883801

RESUMEN

Huanglongbing (HLB) is the most devastating and widespread citrus disease. All commercial citrus varieties are susceptible to the HLB-associated bacterium, Candidatus Liberibacter asiaticus (CLas), which resides in the phloem. The phloem is part of the plant vascular system and is involved in sugar transport. To investigate the plant response to CLas, we enriched for proteins surrounding the phloem in an HLB susceptible sweet orange variety, Washington navel (Citrus sinensis (L) Osbeck). Quantitative proteomics revealed global changes in the citrus proteome after CLas inoculation. Plant metabolism and translation were suppressed, whereas defense-related proteins such as peroxidases, proteases and protease inhibitors were induced in the vasculature. Transcript accumulation and enzymatic activity of plant peroxidases in CLas infected sweet orange varieties under greenhouse and field conditions were assessed. Although peroxidase transcript accumulation was induced in CLas infected sweet orange varieties, peroxidase enzymatic activity varied. Specific serine proteases were up-regulated in Washington navel in the presence of CLas based on quantitative proteomics. Subsequent activity-based protein profiling revealed increased activity of two serine proteases, and reduced activity of one protease in two C. sinensis sweet orange varieties under greenhouse and field conditions. The observations in the current study highlight global reprogramming of the citrus vascular proteome and differential regulation of enzyme classes in response to CLas infection. These results open an avenue for further investigation of diverse responses to HLB across different environmental conditions and citrus genotypes.


Asunto(s)
Citrus/enzimología , Citrus/microbiología , Progresión de la Enfermedad , Peroxidasas/metabolismo , Enfermedades de las Plantas/microbiología , Haz Vascular de Plantas/metabolismo , Proteómica , Serina Proteasas/metabolismo , Citrus/efectos de los fármacos , Citrus/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Peroxidasas/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Haz Vascular de Plantas/efectos de los fármacos , Haz Vascular de Plantas/microbiología , Inhibidores de Proteasas/farmacología , Proteoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Plant Physiol ; 184(2): 1128-1152, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32723807

RESUMEN

Argonautes (AGOs) associate with noncoding RNAs to regulate gene expression during development and stress adaptation. Their role in plant immunity against hemibiotrophic fungal infection remains poorly understood. Here, we explore the function of AGOs in the interaction of wild tobacco (Nicotiana attenuata) with a naturally occurring hemibiotrophic pathogen, Fusarium brachygibbosum Among all AGOs, only transcripts of AGO4 were elicited after fungal infection. The disease progressed more rapidly in AGO4-silenced (irAGO4) plants than in wild type, and small RNA (smRNA) profiling revealed that 24-nucleotide smRNA accumulation was severely abrogated in irAGO4 plants. Unique microRNAs (miRNAs: 130 conserved and 208 novel, including 11 canonical miRNA sequence variants known as "isomiRs") were identified in infected plants; silencing of AGO4 strongly changed miRNA accumulation dynamics. Time-course studies revealed that infection increased accumulation of abscisic acid, jasmonates, and salicylic acid in wild type; in irAGO4 plants, infection accumulated lower jasmonate levels and lower transcripts of jasmonic acid (JA) biosynthesis genes. Treating irAGO4 plants with JA, methyl jasmonate, or cis-(+)-12-oxo-phytodienoic acid restored wild-type levels of resistance. Silencing expression of RNA-directed RNA polymerases RdR1 and RdR2 (but not RdR3) and Dicer-like3 (DCL3, but not DCL2 or DCL4) increased susceptibility to F brachygibbosum The relevance of AGO4, RdR1, RdR2, and DCL3 in a natural setting was revealed when plants individually silenced in their expression (and their binary combinations) were planted in a diseased field plot in the Great Basin Desert of Utah. These plants were more susceptible to infection and accumulated lower JA levels than wild type. We infer that AGO4-dependent smRNAs play a central role in modulating JA biogenesis and signaling during hemibiotrophic fungal infections.


Asunto(s)
Proteínas Argonautas/metabolismo , Ciclopentanos/metabolismo , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/fisiología , Nicotiana/genética , Nicotiana/microbiología , Nicotiana/fisiología , Oxilipinas/metabolismo , Proteínas Argonautas/genética , Fusarium/patogenicidad , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Transducción de Señal/genética , Transducción de Señal/fisiología , Sudoeste de Estados Unidos
6.
Phytopathology ; 110(3): 556-566, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31799900

RESUMEN

Clavibacter michiganensis is a Gram-positive bacterial pathogen that proliferates in the xylem vessels of tomato, causing bacterial wilt and canker symptoms. Accurate detection is a crucial step in confirming outbreaks of bacterial canker and developing management strategies. A major problem with existing detection methods are false-positive and -negative results. Here, we report the use of comparative genomics of 37 diverse Clavibacter strains, including 21 strains sequenced in this study, to identify specific sequences that are C. michiganensis detection targets. Genome-wide phylogenic analyses revealed additional diversity within the genus Clavibacter. Pathogenic C. michiganensis strains varied in plasmid composition, highlighting the need for detection methods based on chromosomal targets. We utilized sequences of C. michiganensis-specific loci to develop a multiplex PCR-based diagnostic platform using two C. michiganensis chromosomal genes (rhuM and tomA) and an internal control amplifying both bacterial and plant DNA (16s ribosomal RNA). The multiplex PCR assay specifically detected C. michiganensis strains from a panel of 110 additional bacteria, including other Clavibacter spp. and bacterial pathogens of tomato. The assay was adapted to detect the presence of C. michiganensis in seed and tomato plant materials with high sensitivity and specificity. In conclusion, the described method represents a robust, specific tool for detection of C. michiganensis in tomato seed and infected plants.


Asunto(s)
Micrococcaceae , Solanum lycopersicum , Actinobacteria , Clavibacter , Genómica , Reacción en Cadena de la Polimerasa Multiplex , Enfermedades de las Plantas
7.
Proc Natl Acad Sci U S A ; 114(23): 6133-6138, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28536194

RESUMEN

Nicotine, the signature alkaloid of Nicotiana species responsible for the addictive properties of human tobacco smoking, functions as a defensive neurotoxin against attacking herbivores. However, the evolution of the genetic features that contributed to the assembly of the nicotine biosynthetic pathway remains unknown. We sequenced and assembled genomes of two wild tobaccos, Nicotiana attenuata (2.5 Gb) and Nicotiana obtusifolia (1.5 Gb), two ecological models for investigating adaptive traits in nature. We show that after the Solanaceae whole-genome triplication event, a repertoire of rapidly expanding transposable elements (TEs) bloated these Nicotiana genomes, promoted expression divergences among duplicated genes, and contributed to the evolution of herbivory-induced signaling and defenses, including nicotine biosynthesis. The biosynthetic machinery that allows for nicotine synthesis in the roots evolved from the stepwise duplications of two ancient primary metabolic pathways: the polyamine and nicotinamide adenine dinucleotide (NAD) pathways. In contrast to the duplication of the polyamine pathway that is shared among several solanaceous genera producing polyamine-derived tropane alkaloids, we found that lineage-specific duplications within the NAD pathway and the evolution of root-specific expression of the duplicated Solanaceae-specific ethylene response factor that activates the expression of all nicotine biosynthetic genes resulted in the innovative and efficient production of nicotine in the genus Nicotiana Transcription factor binding motifs derived from TEs may have contributed to the coexpression of nicotine biosynthetic pathway genes and coordinated the metabolic flux. Together, these results provide evidence that TEs and gene duplications facilitated the emergence of a key metabolic innovation relevant to plant fitness.


Asunto(s)
Nicotiana/genética , Nicotina/biosíntesis , Alcaloides/biosíntesis , Secuencia de Bases , Vías Biosintéticas/genética , Elementos Transponibles de ADN/genética , Evolución Molecular , Duplicación de Gen/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Nicotina/genética , Nicotina/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , Factores de Transcripción/metabolismo
8.
Phytopathology ; 109(11): 1849-1858, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31334679

RESUMEN

Clavibacter michiganensis is the causal agent of bacterial canker of tomato, which causes significant economic losses because of the lack of resistant tomato varieties. Chemical control with streptomycin or cupric bactericides is the last defensive line in canker disease management. Streptomycin is an aminoglycoside antibiotic that inhibits protein synthesis and targets the 30S ribosomal protein RpsL. Streptomycin has been used to control multiple plant bacterial diseases. However, identification and characterization of streptomycin resistance in C. michiganensis have remained unexplored. In this study, a naturally occurring C. michiganensis strain TX-0702 exhibiting spontaneous streptomycin resistance was identified, with a minimum inhibitory concentration of 128 µg/ml. Additionally, an induced streptomycin-resistant strain BT-0505-R was generated by experimental evolution of the sensitive C. michiganensis strain BT-0505. Genome sequencing and functional analyses were used to identify the genes conferring resistance. A point mutation at the 128th nucleotide in the rpsL gene of strain BT-0505-R is responsible for conferring streptomycin resistance. However, in TX-0702, resistance is not attributed to mutation of rpsL, streptomycin inactivation enzymes, or multidrug efflux pumps. The mechanism of resistance in TX-0702 is independent of previously reported bacterial loci. Taken together, these data highlight diverse mechanisms used by a Gram-positive plant pathogenic bacterium to confer antibiotic resistance.


Asunto(s)
Micrococcaceae , Solanum lycopersicum , Farmacorresistencia Bacteriana/genética , Genes Bacterianos/genética , Variación Genética , Micrococcaceae/efectos de los fármacos , Micrococcaceae/genética , Proteínas Ribosómicas/genética , Estreptomicina/farmacología
9.
BMC Genomics ; 19(1): 937, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30558527

RESUMEN

BACKGROUND: Nicotiana attenuata is an ecological model plant whose 2.57 Gb genome has recently been sequenced and assembled and for which miRNAs and their genomic locations have been identified. To understand how this plant's miRNAs are reconfigured during plant-arbuscular mycorrhizal fungal (AMF) interactions and whether hostplant calcium- and calmodulin dependent protein kinase (CCaMK) expression which regulates the AMF interaction also modulates miRNAs levels and regulation, we performed a large-scale miRNA analysis of this plant-AMF interaction. RESULTS: Next generation sequencing of miRNAs in roots of empty vector (EV) N. attenuata plants and an isogenic line silenced in CCaMK expression (irCCaMK) impaired in AMF-interactions grown under competitive conditions with and without AMF inoculum revealed a total of 149 unique miRNAs: 67 conserved and 82 novel ones. The majority of the miRNAs had a length of 21 nucleotides. MiRNA abundances were highly variable ranging from 400 to more than 25,000 reads per million. The miRNA profile of irCCaMK plants impaired in AMF colonization was distinct from fully AMF-functional EV plants grown in the same pot. Six conserved miRNAs were present in all conditions and accumulated differentially depending on treatment and genotype; five (miR6153, miR403a-3p, miR7122a, miR167-5p and miR482d, but not miR399a-3p) showed the highest accumulation in AMF inoculated EV plants compared to inoculated irCCaMK plants. Furthermore, the accumulation patterns of sequence variants of selected conserved miRNAs showed a very distinct pattern related to AMF colonization - one variant of miR473-5p specifically accumulated in AMF-inoculated plants. Also abundances of miR403a-3p, miR171a-3p and one of the sequence variants of miR172a-3p increased in AMF-inoculated EV compared to inoculated irCCaMK plants and to non-inoculated EV plants, while miR399a-3p was most strongly enriched in AMF inoculated irCCaMK plants grown in competition with EV. The analysis of putative targets of selected miRNAs revealed an involvement in P starvation (miR399), phytohormone signaling (Nat-R-PN59, miR172, miR393) and defense (e.g. miR482, miR8667, Nat-R-PN-47). CONCLUSIONS: Our study demonstrates (1) a large-scale reprograming of miRNAs induced by AMF colonization and (2) that the impaired AMF signaling due to CCaMK silencing and the resulting reduced competitive ability of irCCaMK plants play a role in modulating signal-dependent miRNA accumulation.


Asunto(s)
MicroARNs/metabolismo , Micorrizas/fisiología , Nicotiana/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Genotipo , MicroARNs/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Simbiosis , Nicotiana/metabolismo , Nicotiana/microbiología , Transcriptoma
10.
Plant Physiol ; 175(2): 927-946, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28811334

RESUMEN

In Nicotiana attenuata, specific RNA-directed RNA polymerase (RdR1) and the Dicer-like (DCL3 and DCL4) proteins are recruited during herbivore attack to mediate the regulation of defense responses. However, the identity and role(s) of Argonautes (AGOs) involved in herbivory remain unknown. Of the 11 AGOs in the N. attenuata genome, we silenced the expression of 10. Plants silenced in NaAGO8 expression grew normally but were highly susceptible to herbivore attack. Larvae of Manduca sexta grew faster when consuming inverted-repeat stable transformants (irAGO8) plants but did not differ from the wild type when consuming plants silenced in AGO1 (a, b, and c), AGO2, AGO4 (a and b), AGO7, or AGO10 expression. irAGO8 plants were significantly compromised in herbivore-induced levels of defense metabolites such as nicotine, phenolamides, and diterpenoid glycosides. Time-course analyses revealed extensively altered microRNA profiles and the reduced accumulation of MYB8 transcripts and of the associated genes of the phenolamide and phenylpropanoid pathways as well as the nicotine biosynthetic pathway. A possible AGO8-modulated microRNA-messenger RNA target network was inferred. Furthermore, comparative analysis of domains revealed the diversity of AGO conformations, particularly in the small RNA-binding pocket, which may influence substrate recognition/binding and functional specificity. We infer that AGO8 plays a central role in the induction of direct defenses by modulating several regulatory nodes in the defense signaling network during herbivore response. Thus, our study identifies the effector AGO of the herbivore-induced small RNA machinery, which in N. attenuata now comprises RdR1, DCL3/4, and AGO8.


Asunto(s)
Proteínas Argonautas/metabolismo , Manduca/fisiología , Modelos Estructurales , Nicotiana/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Argonautas/genética , Herbivoria , Larva , MicroARNs/genética , Filogenia , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Dominios Proteicos , ARN Mensajero/genética , ARN de Planta/genética , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Alineación de Secuencia , Nicotiana/inmunología , Nicotiana/parasitología
11.
Plant J ; 86(1): 35-49, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26932764

RESUMEN

Spot blotch disease, caused by Bipolaris sorokiniana, is an important threat to wheat, causing an annual loss of ~17%. Under epidemic conditions, these losses may be 100%, yet the molecular responses of wheat to spot blotch remain almost uncharacterized. Moreover, defense-related phytohormone signaling genes have been poorly characterized in wheat. Here, we have identified 18 central components of salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and enhanced disease susceptibility 1 (EDS1) signaling pathways as well as the genes of the phenylpropanoid pathway in wheat. In time-course experiments, we characterized the reprogramming of expression of these pathways in two contrasting genotypes: Yangmai #6 (resistant to spot blotch) and Sonalika (susceptible to spot blotch). We further evaluated the performance of a population of recombinant inbred lines (RILs) by crossing Yangmai#6 and Sonalika (parents) and subsequent selfing to F10 under field conditions in trials at multiple locations. We characterized the reprogramming of defense-related signaling in these RILs as a consequence of spot blotch attack. During resistance to spot blotch attack, wheat strongly elicits SA signaling (SA biogenesis as well as the NPR1-dependent signaling pathway), along with WRKY33 transcription factor, followed by an enhanced expression of phenylpropanoid pathway genes. These may lead to accumulation of phenolics-based defense metabolites that may render resistance against spot blotch. JA signaling may synergistically contribute to the resistance. Failure to elicit SA (and possibly JA) signaling may lead to susceptibility against spot blotch infection in wheat.


Asunto(s)
Ascomicetos/fisiología , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Inmunidad de la Planta , Transducción de Señal , Triticum/fisiología , Ascomicetos/citología , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Endogamia , Anotación de Secuencia Molecular , Oxilipinas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/fisiología , Ácido Salicílico/metabolismo , Triticum/genética , Triticum/inmunología
12.
Mol Plant Microbe Interact ; 30(10): 786-802, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28677494

RESUMEN

Clavibacter michiganensis subsp. michiganensis is a gram-positive bacterial pathogen that proliferates in the xylem vessels of tomato, causing bacterial canker disease. In this study, we sequenced and assembled genomes of 11 C. michiganensis subsp. michiganensis strains isolated from infected tomato fields in California as well as five Clavibacter strains that colonize tomato endophytically but are not pathogenic in this host. The analysis of the C. michiganensis subsp. michiganensis genomes supported the monophyletic nature of this pathogen but revealed genetic diversity among strains, consistent with multiple introduction events. Two tomato endophytes that clustered phylogenetically with C. michiganensis strains capable of infecting wheat and pepper and were also able to cause disease in these plants. Plasmid profiles of the California strains were variable and supported the essential role of the pCM1-like plasmid and the CelA cellulase in virulence, whereas the absence of the pCM2-like plasmid in some pathogenic C. michiganensis subsp. michiganensis strains revealed it is not essential. A large number of secreted C. michiganensis subsp. michiganensis proteins were carbohydrate-active enzymes (CAZymes). Glycome profiling revealed that C. michiganensis subsp. michiganensis but not endophytic Clavibacter strains is able to extensively alter tomato cell-wall composition. Two secreted CAZymes found in all C. michiganensis subsp. michiganensis strains, CelA and PelA1, enhanced pathogenicity on tomato. Collectively, these results provide a deeper understanding of C. michiganensis subsp. michiganensis diversity and virulence strategies.


Asunto(s)
Actinomycetales/genética , Actinomycetales/patogenicidad , Variación Genética , Genómica , Actinomycetales/enzimología , Actinomycetales/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbohidratos/química , Pared Celular/metabolismo , Celulasa/metabolismo , Genoma Bacteriano , Glicómica , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Anotación de Secuencia Molecular , Fenotipo , Filogenia , Plásmidos/genética , Polisacárido Liasas/metabolismo , Análisis de Secuencia de ADN , Virulencia/genética
13.
BMC Plant Biol ; 15: 23, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25626325

RESUMEN

BACKGROUND: Argonaute (AGO) proteins form the core of the RNA-induced silencing complex, a central component of the smRNA machinery. Although reported from several plant species, little is known about their evolution. Moreover, these genes have not yet been cloned from the ecological model plant, Nicotiana attenuata, in which the smRNA machinery is known to mediate important ecological traits. RESULTS: Here, we not only identify 11 AGOs in N. attenuata, we further annotate 133 genes in 17 plant species, previously not annotated in the Phytozome database, to increase the number of plant AGOs to 263 genes from 37 plant species. We report the phylogenetic classification, expansion, and diversification of AGOs in the plant kingdom, which resulted in the following hypothesis about their evolutionary history: an ancestral AGO underwent duplication events after the divergence of unicellular green algae, giving rise to four major classes with subsequent gains/losses during the radiation of higher plants, resulting in the large number of extant AGOs. Class-specific signatures in the RNA-binding and catalytic domains, which may contribute to the functional diversity of plant AGOs, as well as context-dependent changes in sequence and domain architecture that may have consequences for gene function were found. CONCLUSIONS: Together, the results demonstrate that the evolution of AGOs has been a dynamic process producing the signatures of functional diversification in the smRNA pathways of higher plants.


Asunto(s)
Proteínas Argonautas/genética , Evolución Molecular , Proteínas de Plantas/genética , Plantas/genética , Secuencia de Aminoácidos , Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas/química , Plantas/metabolismo , Estructura Terciaria de Proteína , Alineación de Secuencia , Nicotiana/química , Nicotiana/genética , Nicotiana/metabolismo
14.
BMC Genomics ; 15: 121, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24511998

RESUMEN

BACKGROUND: Conceptual parallels exist between bacterial and eukaryotic small-RNA (sRNA) pathways, yet relatively little is known about which protein may recognize and recruit bacterial sRNAs to interact with targets. In eukaryotes, Argonaute (AGO) proteins discharge such functions. The highly conserved bacterial YbeY RNase has structural similarities to the MID domain of AGOs. A limited study had indicated that in Sinorhizobium meliloti the YbeY ortholog regulates the accumulation of sRNAs as well as the target mRNAs, raising the possibility that YbeY may play a previously unrecognized role in bacterial sRNA regulation. RESULTS: We have applied a multipronged approach of loss-of-function studies, genome-wide mRNA and sRNA expression profiling, pathway analysis, target prediction, literature mining and network analysis to unravel YbeY-dependent molecular responses of E. coli exposed to hydroxyurea (HU). Loss of ybeY function, which results in a marked resistance to HU, had global affects on sRNA-mediated gene expression. Of 54 detectable E. coli sRNAs in our microarray analysis, 30 sRNAs showed a differential expression upon HU stress, of which 28 sRNAs displayed a YbeY-dependent change in expression. These included 12 Hfq-dependent and 16 Hfq-independent sRNAs. We successfully identified at least 57 experimentally inferred sRNA-mRNA relationships. Further applying a 'context likelihood of relatedness' algorithm, we reverse engineered the YbeY-dependent Hfq-dependent sRNA-mRNA network as well as YbeY-dependent Hfq-independent sRNA-mRNA network. CONCLUSION: YbeY extensively modulates Hfq-dependent and independent sRNA-mRNA interactions. YbeY-dependent sRNAs have central roles in modulating cellular response to HU stress.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Proteína de Factor 1 del Huésped/genética , Hidroxiurea/farmacología , Metaloproteínas/genética , ARN Bacteriano/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Proteína de Factor 1 del Huésped/metabolismo , Metaloproteínas/metabolismo
15.
BMC Genomics ; 15: 348, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24885295

RESUMEN

BACKGROUND: Deep-sequencing has enabled the identification of large numbers of miRNAs and siRNAs, making the high-throughput target identification a main limiting factor in defining their function. In plants, several tools have been developed to predict targets, majority of them being trained on Arabidopsis datasets. An extensive and systematic evaluation has not been made for their suitability for predicting targets in species other than Arabidopsis. Nor, these have not been evaluated for their suitability for high-throughput target prediction at genome level. RESULTS: We evaluated the performance of 11 computational tools in identifying genome-wide targets in Arabidopsis and other plants with procedures that optimized score-cutoffs for estimating targets. Targetfinder was most efficient [89% 'precision' (accuracy of prediction), 97% 'recall' (sensitivity)] in predicting 'true-positive' targets in Arabidopsis miRNA-mRNA interactions. In contrast, only 46% of true positive interactions from non-Arabidopsis species were detected, indicating low 'recall' values. Score optimizations increased the 'recall' to only 70% (corresponding 'precision': 65%) for datasets of true miRNA-mRNA interactions in species other than Arabidopsis. Combining the results of Targetfinder and psRNATarget delivers high true positive coverage, whereas the intersection of psRNATarget and Tapirhybrid outputs deliver highly 'precise' predictions. The large number of 'false negative' predictions delivered from non-Arabidopsis datasets by all the available tools indicate the diversity in miRNAs-mRNA interaction features between Arabidopsis and other species. A subset of miRNA-mRNA interactions differed significantly for features in seed regions as well as the total number of matches/mismatches. CONCLUSION: Although, many plant miRNA target prediction tools may be optimized to predict targets with high specificity in Arabidopsis, such optimized thresholds may not be suitable for many targets in non-Arabidopsis species. More importantly, non-conventional features of miRNA-mRNA interaction may exist in plants indicating alternate mode of miRNA target recognition. Incorporation of these divergent features would enable next-generation of algorithms to better identify target interactions.


Asunto(s)
Arabidopsis/genética , Genoma de Planta , MicroARNs/metabolismo , Algoritmos , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/química , ARN Mensajero/química , ARN Mensajero/metabolismo , Curva ROC , Análisis de Secuencia de ARN , Termodinámica
16.
Sci Total Environ ; 953: 176178, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39260478

RESUMEN

Mining is a major threat to vegetation and soil in the tropical forests. Reforestation of degraded surface mines is critically dependent on the recovery of soil health, where the nematodes play an important role. However, the key determinants of community assembly of soil nematodes during mine-restoration remain unknown in the tropical rainforests. Here, the recovery of taxonomic diversity of nematode communities and their trophic groups during reforestation of an extremely degraded tropical open-mining area is studied. The factors that may impact their recovery, such as root traits (length, area and tissue density), soil properties (pH and soil organic matter content (SOM)), and taxonomic diversities of soil bacterial and fungal communities are investigated. Differences in these parameters were evaluated in the three soil types: (i) mined soil - the erstwhile soil that was removed during mining and stock-piled for 10 years at the foot of an extremely degraded open-mining area; (ii) reforested soil, sampled from a 10-year successful restoration, which used the mined soil for reforestation; and (iii) undisturbed soil, collected from an adjacent undisturbed/not-mined tropical rainforest. A total of 11, 34 and 29 nematode-genera were identified in mined-, undisturbed-, and reforested soils, respectively. The taxonomic diversities of the 5 nematode groups in the mined soil were 1.5-5.2 times lower than in the undisturbed soil, but were similar in the restored and undisturbed soils. Taxonomic diversities of phytophagous and predator nematodes were correlated to restored root traits; whereas of bacterivores, fungivores, and omnivores were correlated to pH, SOM, soil bacterial and fungal communities. Consequently, complete loss of roots during mining likely severely reduced the nematodes, but their recovery after reforestation led to the restoration of taxonomic diversity of nematode communities. The mix-planting fast-growing tree species may be appropriate for recovering soil health, including nematode diversity, during reforestation of open tropical mines.


Asunto(s)
Minería , Nematodos , Raíces de Plantas , Suelo , Suelo/química , Raíces de Plantas/clasificación , Nematodos/clasificación , Bosque Lluvioso , Clima Tropical , Contaminantes del Suelo , Microbiología del Suelo , Biodiversidad , Clasificación , Biodegradación Ambiental
17.
iScience ; 27(3): 109232, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38425843

RESUMEN

"Candidatus Liberibacter spp." are insect-vectored, fastidious, and vascular-limited phytopathogens. They are the presumptive causal agents of potato zebra chip, tomato vein clearing, and the devastating citrus greening disease worldwide. There is an urgent need to develop new strategies to control them. In this study, we characterized a dual-specificity serine/tyrosine phosphatase (STP) that is well conserved among thirty-three geographically diverse "Candidatus Liberibacter spp." and strains that infect multiple Solanaceaea and citrus spp. The STP is expressed in infected plant tissues, localized at the plant cytosol and plasma membrane, and interferes with plant cell death responses. We employed an in silico target-based molecular modeling and ligand screen to identify two small molecules with high binding affinity to STP. Efficacy studies demonstrated that the two molecules can inhibit "Candidatus Liberibacter spp." but not unrelated pathogens and confer plant disease tolerance. The inhibitors and strategies are promising means to control "Candidatus Liberibacter spp."

18.
Genome ; 56(2): 83-90, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23517317

RESUMEN

Japanese Erwinia pyrifoliae strains cause bacterial shoot blight of pear (BSBP) in Japan. The genetics of Japanese Erwinia remains largely unknown relative to the abundant genomic information available for other Erwinia strains. We compared the genome of Japanese and Korean E. pyrifoliae strains along with those of E. amylovora and E. tasmaniensis. Comparisons with the Korean E. pyrifoliae strain revealed numerous gene insertions/deletions, rearrangements, and inversions in the central regions of the chromosomes. Approximately 80% (2843) of coding DNA sequences (CDSs) are shared by these two genomes which represent about three-quarters of the genome, and there are about 20% unique CDSs. Comparative analysis with closely related erwinias showed that 1942 (more than 50%) core open reading frames (ORF) are shared by all these strains. In addition to two type III secretion systems (hrp/dsp and inv/spa), the genome of Ejp617 encodes numerous virulence factors, including a type VI secretion system, an exopolysaccharide synthesis cluster, and another protein secretion system present in plant pathogenic Erwinia strains. The availability of whole genome sequence should provide a resource to further improve the understanding of pathogenesis in Japanese E. pyrifoliae Ejp617 and to facilitate evolutionary studies among the species of the genus Erwinia.


Asunto(s)
Erwinia/genética , Genes Bacterianos , Genoma Bacteriano , Filogenia , Aberraciones Cromosómicas , Cromosomas Bacterianos/genética , Erwinia/clasificación , Anotación de Secuencia Molecular , Mutagénesis , Sistemas de Lectura Abierta
19.
Nucleic Acids Res ; 39(11): 4691-708, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21325267

RESUMEN

The SMc01113/YbeY protein, belonging to the UPF0054 family, is highly conserved in nearly every bacterium. However, the function of these proteins still remains elusive. Our results show that SMc01113/YbeY proteins share structural similarities with the MID domain of the Argonaute (AGO) proteins, and might similarly bind to a small-RNA (sRNA) seed, making a special interaction with the phosphate on the 5'-side of the seed, suggesting they may form a component of the bacterial sRNA pathway. Indeed, eliminating SMc01113/YbeY expression in Sinorhizobium meliloti produces symbiotic and physiological phenotypes strikingly similar to those of the hfq mutant. Hfq, an RNA chaperone, is central to bacterial sRNA-pathway. We evaluated the expression of 13 target genes in the smc01113 and hfq mutants. Further, we predicted the sRNAs that may potentially target these genes, and evaluated the accumulation of nine sRNAs in WT and smc01113 and hfq mutants. Similar to hfq, smc01113 regulates the accumulation of sRNAs as well as the target mRNAs. AGOs are central components of the eukaryotic sRNA machinery and conceptual parallels between the prokaryotic and eukaryotic sRNA pathways have long been drawn. Our study provides the first line of evidence for such conceptual parallels. Furthermore, our investigation gives insights into the sRNA-mediated regulation of stress adaptation in S. meliloti.


Asunto(s)
Proteínas Bacterianas/fisiología , ARN Pequeño no Traducido/metabolismo , Sinorhizobium meliloti/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Secuencia Conservada , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/fisiología , Datos de Secuencia Molecular , Mutación , Fenotipo , Complejo Silenciador Inducido por ARN/química , Alineación de Secuencia , Sinorhizobium meliloti/metabolismo , Simbiosis
20.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 3): o744, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22412623

RESUMEN

In the title compound, C(26)H(12)FNO(6), the central pyran ring and both benzopyran systems are nonplanar, having total puckering amplitudes of 0.139 (2), 0.050 (1) and 0.112 (2) Å, respectively. The central pyran ring adopts a boat conformation. The crystal structure is stabilized by C-H⋯O, N-H⋯O, N-H⋯F and C-H⋯π inter-actions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA