Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Breed Sci ; 66(5): 734-741, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28163589

RESUMEN

In this study, we confirmed that Vasconcellea cundinamarcensis resists Papaya leaf distortion mosaic virus (PLDMV), and used it to produce intergeneric hybrids with Carica papaya. From the cross between C. papaya and V. cundinamarcensis, we obtained 147 seeds with embryos. Though C. papaya is a monoembryonic plant, multiple embryos were observed in all 147 seeds. We produced 218 plants from 28 seeds by means of embryo-rescue culture. All plants had pubescence on their petioles and stems characteristic of V. cundinamarcensis. Flow cytometry and PCR of 28 plants confirmed they were intergeneric hybrids. To evaluate virus resistance, mechanical inoculation of PLDMV was carried out. The test showed that 41 of 134 intergeneric hybrid plants showed no symptoms and were resistant. The remaining 93 hybrids showed necrotic lesions on the younger leaves than the inoculated leaves. In most of the 93 hybrids, the necrotic lesions enclosed the virus and prevented further spread. These results suggest that the intergeneric hybrids will be valuable material for PLDMV-resistant papaya breeding.

2.
Mol Genet Genomics ; 290(2): 661-70, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25416421

RESUMEN

The sex type of papaya (Carica papaya) is determined by the pair of sex chromosomes (XX, female; XY, male; and XY(h), hermaphrodite), in which there is a non-recombining genomic region in the Y and Y(h) chromosomes. This region is presumed to be involved in determination of males and hermaphrodites; it is designated as the male-specific region in the Y chromosome (MSY) and the hermaphrodite-specific region in the Y(h) chromosome (HSY). Here, we identified the genes determining male and hermaphrodite sex types by comparing MSY and HSY genomic sequences. In the MSY and HSY genomic regions, we identified 14,528 nucleotide substitutions and 965 short indels with a large gap and two highly diverged regions. In the predicted genes expressed in flower buds, we found no nucleotide differences leading to amino acid changes between the MSY and HSY. However, we found an HSY-specific transposon insertion in a gene (SVP like) showing a similarity to the Short Vegetative Phase (SVP) gene. Study of SVP-like transcripts revealed that the MSY allele encoded an intact protein, while the HSY allele encoded a truncated protein. Our findings demonstrated that the SVP-like gene is a candidate gene for male-hermaphrodite determination in papaya.


Asunto(s)
Carica/genética , Cromosomas de las Plantas/genética , Genes de Plantas , Estudios de Asociación Genética , Polimorfismo Genético , Análisis de Secuencia de ADN , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo
3.
PLoS One ; 9(1): e87138, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24498029

RESUMEN

Momordica charantia is a monoecious plant of the Cucurbitaceae family that has both male and female unisexual flowers. Its unique gynoecious line, OHB61-5, is essential as a maternal parent in the production of F1 cultivars. To identify the DNA markers for this gynoecy, a RAD-seq (restriction-associated DNA tag sequencing) analysis was employed to reveal genome-wide DNA polymorphisms and to genotype the F2 progeny from a cross between OHB61-5 and a monoecious line. Based on a RAD-seq analysis of F2 individuals, a linkage map was constructed using 552 co-dominant markers. In addition, after analyzing the pooled genomic DNA from monoecious or gynoecious F2 plants, several SNP loci that are genetically linked to gynoecy were identified. GTFL-1, the closest SNP locus to the putative gynoecious locus, was converted to a conventional DNA marker using invader assay technology, which is applicable to the marker-assisted selection of gynoecy in M. charantia breeding.


Asunto(s)
Genoma de Planta/genética , Momordica charantia/genética , Secuencia de Bases , Mapeo Cromosómico/métodos , Ligamiento Genético/genética , Marcadores Genéticos/genética , Genotipo , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN/métodos
4.
PLoS One ; 7(7): e40904, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22815863

RESUMEN

Papaya (Carica papaya) is a trioecious plant species that has male, female and hermaphrodite flowers on different plants. The primitive sex chromosomes genetically determine the sex of the papaya. Although draft sequences of the papaya genome are already available, the genes for sex determination have not been identified, likely due to the complicated structure of its sex-chromosome sequences. To identify the candidate genes for sex determination, we conducted a transcriptome analysis of flower samples from male, female and hermaphrodite plants using high-throughput SuperSAGE for digital gene expression analysis. Among the short sequence tags obtained from the transcripts, 312 unique tags were specifically mapped to the primitive sex chromosome (X or Y(h)) sequences. An annotation analysis revealed that retroelements are the most abundant sequences observed in the genes corresponding to these tags. The majority of tags on the sex chromosomes were located on the X chromosome, and only 30 tags were commonly mapped to both the X and Y(h) chromosome, implying a loss of many genes on the Y(h) chromosome. Nevertheless, candidate Y(h) chromosome-specific female determination genes, including a MADS-box gene, were identified. Information on these sex chromosome-specific expressed genes will help elucidating sex determination in the papaya.


Asunto(s)
Carica/genética , Cromosomas de las Plantas/genética , Perfilación de la Expresión Génica/métodos , Genes de Plantas/genética , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo/genética , Secuencia de Bases , Flores/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA