Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888125

RESUMEN

The human malaria parasite Plasmodium falciparum genome is among the most A + T rich, with low complexity regions (LCRs) inserted in coding sequences including those for proteins targeted to its essential relict plastid (apicoplast). Replication of the apicoplast genome (plDNA), mediated by the atypical multifunctional DNA polymerase PfPrex, would require additional enzymatic functions for lagging strand processing. We identified an apicoplast-targeted, [4Fe-4S]-containing, FEN/Exo (PfExo) with a long LCR insertion and detected its interaction with PfPrex. Distinct from other known exonucleases across organisms, PfExo recognized a wide substrate range; it hydrolyzed 5'-flaps, processed dsDNA as a 5'-3' exonuclease, and was a bipolar nuclease on ssDNA and RNA-DNA hybrids. Comparison with the rodent P. berghei ortholog PbExo, which lacked the insertion and [4Fe-4S], revealed interspecies functional differences. The insertion-deleted PfExoΔins behaved like PbExo with a limited substrate repertoire because of compromised DNA binding. Introduction of the PfExo insertion into PbExo led to gain of activities that the latter initially lacked. Knockout of PbExo indicated essentiality of the enzyme for survival. Our results demonstrate the presence of a novel apicoplast exonuclease with a functional LCR that diversifies substrate recognition, and identify it as the candidate flap-endonuclease and RNaseH required for plDNA replication and maintenance.

2.
ACS Infect Dis ; 10(6): 1904-1913, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38752809

RESUMEN

Malaria parasites have a complex life cycle and undergo replication and population expansion within vertebrate hosts and mosquito vectors. These developmental transitions rely on changes in gene expression and chromatin reorganization that result in the activation and silencing of stage-specific genes. The ApiAp2 family of DNA-binding proteins plays an important role in regulating gene expression in malaria parasites. Here, we characterized the ApiAp2 protein in Plasmodium berghei, which we termed Ap2-D. In silico analysis revealed that Ap2-D has three beta-sheets followed by a helix at the C-terminus for DNA binding. Using gene tagging with 3XHA-mCherry, we found that Ap2-D is expressed in Plasmodium blood stages and is present in the parasite cytoplasm and nucleus. Surprisingly, our gene deletion study revealed a completely dispensable role for Ap2-D in the entirety of the P. berghei life cycle. Ap2-D KO parasites were found to grow in the blood successfully and progress through the mosquito midgut and salivary glands. Sporozoites isolated from mosquito salivary glands were infective for hepatocytes and achieved similar patency as WT in mice. We emphasize the importance of genetic validation of antimalarial drug targets before progressing them to drug discovery.


Asunto(s)
Estadios del Ciclo de Vida , Plasmodium berghei , Proteínas Protozoarias , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/metabolismo , Animales , Ratones , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Malaria/parasitología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Esporozoítos/crecimiento & desarrollo , Esporozoítos/metabolismo , Esporozoítos/fisiología , Glándulas Salivales/parasitología , Mosquitos Vectores/parasitología , Femenino , Anopheles/parasitología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Hepatocitos/parasitología
3.
Int J Parasitol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964640

RESUMEN

The integrity of genomes of the two crucial organelles of the malaria parasite - an apicoplast and mitochondrion in each cell - must be maintained by DNA repair mediated by proteins targeted to these compartments. We explored the localisation and function of Plasmodium falciparum base excision repair (BER) DNA N-glycosylase homologs PfEndoIII and PfOgg1. These N-glycosylases would putatively recognise DNA lesions prior to the action of apurinic/apyrimidinic (AP)-endonucleases. Both Ape1 and Apn1 endonucleases have earlier been shown to function solely in the parasite mitochondrion. Immunofluorescence localisation showed that PfEndoIII was exclusively mitochondrial. PfOgg1 was not seen clearly in mitochondria when expressed as a PfOgg1leader-GFP fusion, although chromatin immunoprecipitation assays showed that it could interact with both mitochondrial and apicoplast DNA. Recombinant PfEndoIII functioned as a DNA N-glycosylase as well as an AP-lyase on thymine glycol (Tg) lesions. We further studied the importance of Ogg1 in the malaria life cycle using reverse genetic approaches in Plasmodium berghei. Targeted disruption of PbOgg1 resulted in loss of 8-oxo-G specific DNA glycosylase/lyase activity. PbOgg1 knockout did not affect blood, mosquito or liver stage development but caused reduced blood stage infection after inoculation of sporozoites in mice. A significant reduction in erythrocyte infectivity by PbOgg1 knockout hepatic merozoites was also observed, thus showing that PbOgg1 ensures smooth transition from liver to blood stage infection. Our results strengthen the view that the Plasmodium mitochondrial genome is an important site for DNA repair by the BER pathway.

4.
DNA Repair (Amst) ; 101: 103098, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33743509

RESUMEN

The malaria parasite has a single mitochondrion which carries multiple tandem repeats of its 6 kb genome encoding three proteins of the electron transport chain. There is little information about DNA repair mechanisms for mitochondrial genome maintenance in Plasmodium spp. Of the two AP-endonucleases of the BER pathway encoded in the parasite nuclear genome, the EndoIV homolog PfApn1 has been identified as a mitochondrial protein with restricted functions. We explored the targeting and biochemical properties of the ExoIII homolog PfApe1. PfApe1 localized in the mitochondrion and exhibited AP-site cleavage, 3'-5' exonuclease, 3'-phosphatase, nucleotide incision repair (NIR) and RNA cleavage activities indicating a wider functional role than PfApn1. The parasite enzyme differed from human APE1 in possessing a large, disordered N-terminal extension. Molecular modelling revealed conservation of structural domains but variations in DNA-interacting residues and an insertion in the α-8 loop suggested differences with APE1. Unlike APE1, where AP-site cleavage and NIR activities could be mutually exclusive based on pH and Mg2+ ion concentration, PfApe1 was optimally active under similar conditions suggesting that it can function both as an AP-endonuclease in BER and directly cleave damaged bases in NIR under similar physiological conditions. To investigate the role of Ape1 in malaria life cycle, we disrupted the gene by double-cross-over homologous recombination. Ape1 knockout (KO) P. berghei parasites showed normal development of blood and mosquito stages. However, inoculation of mice with Ape1 KO salivary gland sporozoites revealed a reduced capacity to initiate blood stage infection. Ape1 KO parasites underwent normal liver stage development until merozoites egressed from hepatocytes. Our results indicated that the delay in pre-patent period was due to the inability of Ape1 KO merosomes to infect erythrocytes efficiently.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Mitocondrias/enzimología , Plasmodium falciparum/enzimología , Animales , ADN/metabolismo , Humanos , Cinética , Estadios del Ciclo de Vida , Malaria Falciparum , Ratones , Mitocondrias/genética , Modelos Moleculares , Enzimas Multifuncionales , Plasmodium berghei , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Conformación Proteica , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA