Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Plant J ; 118(5): 1358-1371, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38341799

RESUMEN

Watercore is a common physiological disease of Rosaceae plants, such as apples (Malus domestica), usually occurring during fruit ripening. Apple fruit with watercore symptoms is prone to browning and rotting, thus losing commercial viability. Sorbitol and calcium ions are considered key factors affecting watercore occurrence in apples. However, the mechanism by which they affect the occurrence of watercore remains unclear. Here, we identified that the transcription factor MdWRKY9 directly binds to the promoter of MdSOT2, positively regulates the transcription of MdSOT2, increases sorbitol content in fruit, and promotes watercore occurrence. Additionally, MdCRF4 can directly bind to MdWRKY9 and MdSOT2 promoters, positively regulating their expression. Since calcium ions can induce the ubiquitination and degradation of the transcription factor MdCRF4, they can inhibit the transcription of MdWRKY9 and MdSOT2 by degrading MdCRF4, thereby reducing the sorbitol content in fruit and inhibiting the occurrence of fruit watercore disease. Our data sheds light on how calcium ions mitigate watercore in fruit, providing molecular-level insights to enhance fruit quality artificially.


Asunto(s)
Calcio , Frutas , Regulación de la Expresión Génica de las Plantas , Malus , Proteínas de Plantas , Sorbitol , Factores de Transcripción , Malus/genética , Malus/metabolismo , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Calcio/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Sorbitol/metabolismo , Regiones Promotoras Genéticas/genética
2.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37950878

RESUMEN

In this study, based on scalp electroencephalogram (EEG), we conducted cortical source localization and functional network analyses to investigate the underlying mechanism explaining the decision processes when individuals anticipate maximizing gambling benefits, particularly in situations where the decision outcomes are inconsistent with the profit goals. The findings shed light on the feedback monitoring process, wherein incongruity between outcomes and gambling goals triggers a more pronounced medial frontal negativity and activates the frontal lobe. Moreover, long-range theta connectivity is implicated in processing surprise and uncertainty caused by inconsistent feedback conditions, while middle-range delta coupling reflects a more intricate evaluation of feedback outcomes, which subsequently modifies individual decision-making for optimizing future rewards. Collectively, these findings deepen our comprehension of decision-making under circumstances where the profit goals are compromised by decision outcomes and provide electrophysiological evidence supporting adaptive adjustments in individual decision strategies to achieve maximum benefit.


Asunto(s)
Juego de Azar , Humanos , Retroalimentación , Toma de Decisiones/fisiología , Electroencefalografía , Lóbulo Frontal/fisiología , Encéfalo
3.
Cereb Cortex ; 33(15): 9429-9437, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37328940

RESUMEN

Risky decision-making is affected by past feedback, especially after encountering the beneficial loss in the past decision-making round, yet little is known about the mechanism accounting for the distinctive decision-making that different individuals may make under the past loss context. We extracted decision functional medial frontal negative (MFN) and the cortical thickness (CT) from multi-modality electroencephalography (EEG) and T1-weighted structural MRI (sMRI) datasets to assess the individual risky decision under the past loss context. First, concerning the MFN, the low-risk group (LRG) exhibits larger MFN amplitude and longer reaction time than the high-risk group (HRG) when making risky decisions under the loss context. Subsequently, the sMRI analysis reveals a greater CT in the left anterior insula (AI) for HRG compared with LRG, and a greater CT in AI is associated with a high level of impulsivity, driving individuals to make risky choices under the past loss context. Furthermore, for all participants, the corresponding risky decision behavior could be exactly predicted as a correlation coefficient of 0.523 was acquired, and the classification by combing the MFN amplitude and the CT of the left AI also achieves an accuracy of 90.48% to differentiate the two groups. This study may offer new insight into understanding the mechanism that accounts for the inter-individual variability of risky decisions under the loss context and denotes new indices for the prediction of the risky participants.


Asunto(s)
Toma de Decisiones , Electroencefalografía , Humanos , Toma de Decisiones/fisiología , Asunción de Riesgos , Imagen por Resonancia Magnética , Electrofisiología
4.
Cereb Cortex ; 33(14): 8904-8912, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37191346

RESUMEN

Despite node-centric studies revealing an association between resting-state functional connectivity and individual risk propensity, the prediction of future risk decisions remains undetermined. Herein, we applied a recently emerging edge-centric method, the edge community similarity network (ECSN), to alternatively describe the community structure of resting-state brain activity and to probe its contribution to predicting risk propensity during gambling. Results demonstrated that inter-individual variability of risk decisions correlates with the inter-subnetwork couplings spanning the visual network (VN) and default mode network (DMN), cingulo-opercular task control network, and sensory/somatomotor hand network (SSHN). Particularly, participants who have higher community similarity of these subnetworks during the resting state tend to choose riskier and higher yielding bets. And in contrast to low-risk propensity participants, those who behave high-risky show stronger couplings spanning the VN and SSHN/DMN. Eventually, based on the resting-state ECSN properties, the risk rate during the gambling task is effectively predicted by the multivariable linear regression model at the individual level. These findings provide new insights into the neural substrates of the inter-individual variability in risk propensity and new neuroimaging metrics to predict individual risk decisions in advance.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Vías Nerviosas/diagnóstico por imagen , Creatividad
5.
Cereb Cortex ; 33(8): 4740-4751, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36178127

RESUMEN

Human language units are hierarchical, and reading acquisition involves integrating multisensory information (typically from auditory and visual modalities) to access meaning. However, it is unclear how the brain processes and integrates language information at different linguistic units (words, phrases, and sentences) provided simultaneously in auditory and visual modalities. To address the issue, we presented participants with sequences of short Chinese sentences through auditory, visual, or combined audio-visual modalities while electroencephalographic responses were recorded. With a frequency tagging approach, we analyzed the neural representations of basic linguistic units (i.e. characters/monosyllabic words) and higher-level linguistic structures (i.e. phrases and sentences) across the 3 modalities separately. We found that audio-visual integration occurs in all linguistic units, and the brain areas involved in the integration varied across different linguistic levels. In particular, the integration of sentences activated the local left prefrontal area. Therefore, we used continuous theta-burst stimulation to verify that the left prefrontal cortex plays a vital role in the audio-visual integration of sentence information. Our findings suggest the advantage of bimodal language comprehension at hierarchical stages in language-related information processing and provide evidence for the causal role of the left prefrontal regions in processing information of audio-visual sentences.


Asunto(s)
Mapeo Encefálico , Comprensión , Humanos , Comprensión/fisiología , Encéfalo/fisiología , Lingüística , Electroencefalografía
6.
Neuroimage ; 270: 119997, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36868393

RESUMEN

The brain functions as an accurate circuit that regulates information to be sequentially propagated and processed in a hierarchical manner. However, it is still unknown how the brain is hierarchically organized and how information is dynamically propagated during high-level cognition. In this study, we developed a new scheme for quantifying the information transmission velocity (ITV) by combining electroencephalogram (EEG) and diffusion tensor imaging (DTI), and then mapped the cortical ITV network (ITVN) to explore the information transmission mechanism of the human brain. The application in MRI-EEG data of P300 revealed bottom-up and top-down ITVN interactions subserving P300 generation, which was comprised of four hierarchical modules. Among these four modules, information exchange between visual- and attention-activated regions occurred at a high velocity, related cognitive processes could thus be efficiently accomplished due to the heavy myelination of these regions. Moreover, inter-individual variability in P300 was probed to be attributed to the difference in information transmission efficiency of the brain, which may provide new insight into the cognitive degenerations in clinical neurodegenerative disorders, such as Alzheimer's disease, from the transmission velocity perspective. Together, these findings confirm the capacity of ITV to effectively determine the efficiency of information propagation in the brain.


Asunto(s)
Encéfalo , Imagen de Difusión Tensora , Humanos , Encéfalo/fisiología , Cognición/fisiología , Electroencefalografía/métodos , Mapeo Encefálico/métodos
7.
New Phytol ; 234(5): 1714-1734, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35254663

RESUMEN

Nitric oxide (NO) is known to modulate the action of several phytohormones. This includes the gaseous hormone ethylene, but the molecular mechanisms underlying the effect of NO on ethylene biosynthesis are unclear. Here, we observed a decrease in endogenous NO abundance during apple (Malus domestica) fruit development and exogenous treatment of apple fruit with a NO donor suppressed ethylene production, suggesting that NO is a ripening suppressor. Expression of the transcription factor MdERF5 was activated by NO donor treatment. NO induced the nucleocytoplasmic shuttling of MdERF5 by modulating its interaction with the protein phosphatase, MdPP2C57. MdPP2C57-induced dephosphorylation of MdERF5 at Ser260 is sufficient to promote nuclear export of MdERF5. As a consequence of this export, MdERF5 proteins in the cytoplasm interacted with and suppressed the activity of MdACO1, an enzyme that converts 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. The NO-activated MdERF5 was observed to increase in abundance in the nucleus and bind to the promoter of the ACC synthase gene MdACS1 and directly suppress its transcription. Together, these results suggest that NO-activated nucleocytoplasmic MdERF5 suppresses the action of ethylene biosynthetic genes, thereby suppressing ethylene biosynthesis and limiting fruit ripening.


Asunto(s)
Malus , Transporte Activo de Núcleo Celular , Etilenos/metabolismo , Factor V/genética , Factor V/metabolismo , Factor V/farmacología , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Malus/metabolismo , Óxido Nítrico/metabolismo , Proteínas de Plantas/metabolismo
8.
Brain Topogr ; 34(1): 78-87, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33128660

RESUMEN

Tourette syndrome (TS) is a neuropsychiatric disorder with childhood onset characterized by chronic motor and vocal tics; however, the current diagnosis of TS patients is subjective, as it is mainly assessed based on the parents' description alongside specific evaluations. The early and accurate diagnosis of TS based on its potential symptoms in children would be of benefit in their future therapy, but reliable diagnoses are difficult due to the lack of objective knowledge of the etiology and pathogenesis of TS. In this study, resting-state electroencephalograms were first collected from 36 patients and 21 healthy controls (HCs); the corresponding resting-state functional networks were then constructed, and the potential differences in network topology between the two groups were extracted by using the topology of the spatial pattern of the network (SPN). Compared to the HCs, the TS patients exhibited decreased frontotemporal/occipital/parietal connectivity. When classifying the two groups, compared to the network properties, the derived SPN features achieved a much higher accuracy of 92.31%. The intrinsic long-range connectivity between the frontal and the temporal/occipital/parietal lobes was damaged in the patient group, and this dysfunctional network pattern might serve as a reliable biomarker to differentiate TS patients from HCs as well as to assess the severity of tic symptoms.


Asunto(s)
Tics , Síndrome de Tourette , Niño , Electroencefalografía , Humanos , Lóbulo Parietal/diagnóstico por imagen
9.
Neuroimage ; 205: 116285, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31629829

RESUMEN

The P300 event-related potential (ERP) varies across individuals, and exploring this variability deepens our knowledge of the event, and scope for its potential applications. Previous studies exploring the P300 have relied on either electroencephalography (EEG) or functional magnetic resonance imaging (fMRI). We applied simultaneous event-related EEG-fMRI to investigate how the network structure is updated from rest to the P300 task so as to guarantee information processing in the oddball task. We first identified 14 widely distributed regions of interest (ROIs) that were task-associated, including the inferior frontal gyrus and the middle frontal gyrus, etc. The task-activated network was found to closely relate to the concurrent P300 amplitude, and moreover, the individuals with optimized resting-state brain architectures experienced the pruning of network architecture, i.e. decreasing connectivity, when the brain switched from rest to P300 task. Our present simultaneous EEG-fMRI study explored the brain reconfigurations governing the variability in P300 across individuals, which provided the possibility to uncover new biomarkers to predict the potential for personalized control of brain-computer interfaces.


Asunto(s)
Corteza Cerebral/fisiología , Conectoma , Electroencefalografía , Potenciales Relacionados con Evento P300/fisiología , Imagen por Resonancia Magnética , Red Nerviosa/fisiología , Desempeño Psicomotor/fisiología , Descanso/fisiología , Adulto , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Masculino , Red Nerviosa/diagnóstico por imagen , Adulto Joven
10.
Neuroimage ; 206: 116333, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31698078

RESUMEN

Decision-making plays an essential role in the interpersonal interactions and cognitive processing of individuals. There has been increasing interest in being able to predict an individual's decision-making response (i.e., acceptance or rejection). We proposed an electroencephalogram (EEG)-based computational intelligence framework to predict individual responses. Specifically, the discriminative spatial network pattern (DSNP), a supervised learning approach, was applied to single-trial EEG data to extract the DSNP feature from the single-trial brain network. A linear discriminate analysis (LDA) trained on the DSNP features was then used to predict the individual response trial-by-trial. To verify the performance of the proposed DSNP, we recruited two independent subject groups, and recorded the EEGs using two types of EEG systems. The performances of the trial-by-trial predictors achieved an accuracy of 0.88 ±â€¯0.09 for the first dataset, and 0.90 ±â€¯0.10 for the second dataset. These trial-by-trial prediction performances suggested that individual responses could be predicted trial-by-trial by using the specific pattern of single-trial EEG networks, and our proposed method has the potential to establish the biologically inspired artificial intelligence decision system.


Asunto(s)
Encéfalo/fisiología , Toma de Decisiones/fisiología , Electroencefalografía , Aprendizaje Automático Supervisado , Adulto , Análisis Discriminante , Potenciales Evocados , Femenino , Humanos , Masculino , Vías Nerviosas , Procesamiento de Señales Asistido por Computador , Adulto Joven
11.
Cereb Cortex ; 29(10): 4119-4129, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30535319

RESUMEN

This study used large-scale time-varying network analysis to reveal the diverse network patterns during the different decision stages and found that the responses of rejection and acceptance involved different network structures. When participants accept unfair offers, the brain recruits a more bottom-up mechanism with a much stronger information flow from the visual cortex (O2) to the frontal area, but when they reject unfair offers, it displayed a more top-down flow derived from the frontal cortex (Fz) to the parietal and occipital cortices. Furthermore, we performed 2 additional studies to validate the above network models: one was to identify the 2 responses based on the out-degree information of network hub nodes, which results in 70% accuracy, and the other utilized theta burst stimulation (TBS) of transcranial magnetic stimulation (TMS) to modulate the frontal area before the decision-making tasks. We found that the intermittent TBS group demonstrated lower acceptance rates and that the continuous TBS group showed higher acceptance rates compared with the sham group. Similar effects were not observed after TBS of a control site. These results suggest that the revealed decision-making network model can serve as a potential intervention model to alter decision responses.


Asunto(s)
Encéfalo/fisiología , Toma de Decisiones/fisiología , Adolescente , Adulto , Electroencefalografía , Femenino , Lóbulo Frontal/fisiología , Humanos , Masculino , Vías Nerviosas/fisiología , Estimulación Magnética Transcraneal , Adulto Joven
12.
Brain Topogr ; 32(2): 304-314, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30474793

RESUMEN

Mentally imagining rather physically executing the motor behaviors is defined as motor imagery (MI). During MI, the mu rhythmical oscillation of cortical neurons is the event-related desynchronization (ERD) subserving the physiological basis of MI-based brain-computer interface. In our work, we investigated the specific brain network reconfiguration from rest idle to MI task states, and also probed the underlying relationship between the brain network reconfiguration and MI related ERD. Findings revealed that comparing to rest state, the MI showed the enhanced motor area related linkages and the deactivated activity of default mode network. In addition, the reconfigured network index was closely related to the ERDs, i.e., the higher the reconfigured network index was, the more obvious the ERDs were. These findings consistently implied that the reconfiguration from rest to task states underlaid the reallocation of related brain resources, and the efficient brain reconfiguration corresponded to a better MI performance, which provided the new insights into understanding the mechanism of MI as well as the potential biomarker to evaluate the rehabilitation quality for those patients with deficits of motor function.


Asunto(s)
Encéfalo/fisiología , Electroencefalografía , Imaginación/fisiología , Movimiento/fisiología , Red Nerviosa/fisiología , Algoritmos , Corteza Cerebral/fisiología , Sincronización de Fase en Electroencefalografía , Femenino , Humanos , Masculino , Corteza Motora/fisiología , Descanso/fisiología , Cuero Cabelludo
13.
Biomed Eng Online ; 15(1): 131, 2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27884145

RESUMEN

BACKGROUND: In schizophrenia, executive dysfunction is the most critical cognitive impairment, and is associated with abnormal neural activities, especially in the frontal lobes. Complexity estimation using electroencephalogram (EEG) recording based on nonlinear dynamics and task performance tests have been widely used to estimate executive dysfunction in schizophrenia. METHODS: The present study estimated the cool executive function based on fractal dimension (FD) values of EEG data recorded from first-episode schizophrenia patients and healthy controls during the performance of three cool executive function tasks, namely, the Trail Making Test-A (TMT-A), Trail Making Test-B (TMT-B), and Tower of Hanoi tasks. RESULTS: The results show that the complexity of the frontal EEG signals that were measured using FD was different in first-episode schizophrenia patients during the manipulation of executive function. However, no differences between patients and controls were found in the FD values of the EEG data that was recorded during the performance of the Tower of Hanoi task. CONCLUSIONS: These results suggest that cool executive function exhibits little impairment in first-episode schizophrenia patients.


Asunto(s)
Electroencefalografía , Función Ejecutiva , Lóbulo Frontal/fisiopatología , Esquizofrenia/fisiopatología , Procesamiento de Señales Asistido por Computador , Adulto , Artefactos , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Dinámicas no Lineales
14.
Psychiatry Res Neuroimaging ; 338: 111769, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38141592

RESUMEN

During task-based functional magnetic resonance imaging (t-fMRI) patients with depressive disorder (DD) have shown abnormal caudate nucleus activation. There have been no meta-analyses that are conducted on the caudate nucleus using Activation Likelihood Estimation (ALE) in patients with DD, and the relationships between abnormal caudate activity and different behavior domains in patients with DD remain unclear. There were 24 previously published t-fMRI studies included in the study with the caudate nucleus as the region of interest. Meta-analyses were performed using the method of ALE. Included five ALE meta-analyses: (1) the hypoactivated caudate nucleus relative to healthy controls (HCs); (2) the hyper-activated caudate nucleus; (3) the abnormal activation in the caudate nucleus in the emotion domain; (4) the abnormal activation in cognition domain; (5) the abnormal activation in the affective cognition domain. Results revealed that the hypo-/hyper-activity in the caudate subregions is mainly located in the caudate body and head, while the relationships between abnormal caudate subregions and different behavior domains are complex. The hypoactivation of the caudate body and head plays a key role in the emotions which indicates there is a positive relationship between the decreased caudate activity and depressed emotional behaviors in patients with DD.


Asunto(s)
Núcleo Caudado , Trastorno Depresivo , Humanos , Núcleo Caudado/diagnóstico por imagen , Encéfalo , Emociones/fisiología , Trastorno Depresivo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
15.
Front Psychiatry ; 14: 1154011, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37181875

RESUMEN

Cool executive dysfunction is a crucial feature in people living with schizophrenia which is related to cognition impairment and the severity of the clinical symptoms. Based on electroencephalogram (EEG), our current study explored the change of brain network under the cool executive tasks in individuals living with schizophrenia before and after atypical antipsychotic treatment (before_TR vs. after_TR). 21 patients with schizophrenia and 24 healthy controls completed the cool executive tasks, involving the Tower of Hanoi Task (THT) and Trail-Marking Test A-B (TMT A-B). The results of this study uncovered that the reaction time of the after_TR group was much shorter than that of the before_TR group in the TMT-A and TMT-B. And the after_TR group showed fewer error numbers in the TMT-B than those of the before_TR group. Concerning the functional network, stronger DMN-like linkages were found in the before_TR group compared to the control group. Finally, we adopted a multiple linear regression model based on the change network properties to predict the patient's PANSS change ratio. Together, the findings deepened our understanding of cool executive function in individuals living with schizophrenia and might provide physiological information to reliably predict the clinical efficacy of schizophrenia after atypical antipsychotic treatment.

16.
Med Biol Eng Comput ; 61(9): 2269-2279, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36988789

RESUMEN

The attention to cueing among nurses with anxiety affects their nursing quality seriously. Nevertheless, the neural mechanism of attention under anxiety among nurses has not been revealed. In this study, we utilized the event-related potential (ERP) and functional brain networks to investigate the neural mechanism of the cueing attention differences between anxiety and non-anxiety nurse groups (AG-20 nurses; NAG-20 nurses) in the spatial cueing task. The results revealed that in the invalid cues (144 trials), longer reaction times, larger P2 amplitudes, and more linkages between the right frontal and parietal areas were found in AG compared to NAG. In the valid cues (288 trials), there were no significant behavioral and neural differences between the two groups. The AG in the invalid cues showed slower response times, larger P2 and N5 amplitudes, and denser linkages originating from the occipital cortex than those in the valid cues. The convolutional neural network was trained for discriminating between the anxiety nurses and the normal ones, with the average accuracy being 0.76. The findings provided a potential physiological biomarker to predict the anxiety group who need to give more psychological attention. Nurse leaders maybe get more information for offering solutions to retain mental health among nurses.


Asunto(s)
Señales (Psicología) , Enfermeras y Enfermeros , Humanos , Encéfalo , Potenciales Evocados , Electroencefalografía
17.
Artículo en Inglés | MEDLINE | ID: mdl-37022389

RESUMEN

Multichannel electroencephalogram (EEG) is an array signal that represents brain neural networks and can be applied to characterize information propagation patterns for different emotional states. To reveal these inherent spatial graph features and increase the stability of emotion recognition, we propose an effective emotion recognition model that performs multicategory emotion recognition with multiple emotion-related spatial network topology patterns (MESNPs) by learning discriminative graph topologies in EEG brain networks. To evaluate the performance of our proposed MESNP model, we conducted single-subject and multisubject four-class classification experiments on two public datasets, MAHNOB-HCI and DEAP. Compared with existing feature extraction methods, the MESNP model significantly enhances the multiclass emotional classification performance in the single-subject and multisubject conditions. To evaluate the online version of the proposed MESNP model, we designed an online emotion monitoring system. We recruited 14 participants to conduct the online emotion decoding experiments. The average online experimental accuracy of the 14 participants was 84.56%, indicating that our model can be applied in affective brain-computer interface (aBCI) systems. The offline and online experimental results demonstrate that the proposed MESNP model effectively captures discriminative graph topology patterns and significantly improves emotion classification performance. Moreover, the proposed MESNP model provides a new scheme for extracting features from strongly coupled array signals.

18.
Artículo en Inglés | MEDLINE | ID: mdl-37922187

RESUMEN

Frontotemporal dementia (FTD) is frequently misdiagnosed as Alzheimer's disease (AD) due to similar clinical symptoms. In this study, we constructed frequency-based multilayer resting-state electroencephalogram (EEG) networks and extracted representative network features to improve the differentiation between AD and FTD. When compared with healthy controls (HC), AD showed primarily stronger delta-alpha cross-couplings and weaker theta-sigma cross-couplings. Notably, when comparing the AD and FTD groups, we found that the AD exhibited stronger delta-alpha and delta-beta connectivity than the FTD. Thereafter, by extracting the representative network features and then applying these features in the classification between AD and FTD, an accuracy of 81.1% was achieved. Finally, a multivariable linear regressive model was built, based on the differential topologies, and then adopted to predict the scores of the Mini-Mental State Examination (MMSE) scale. Accordingly, the predicted and actual measured scores were indeed significantly correlated with each other ( r = 0.274, p = 0.036). These findings consistently suggest that frequency-based multilayer resting-state networks can be utilized for classifying AD and FTD and have potential applications for clinical diagnosis.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Humanos , Enfermedad de Alzheimer/diagnóstico , Demencia Frontotemporal/diagnóstico , Electroencefalografía , Pruebas de Estado Mental y Demencia
19.
Artículo en Inglés | MEDLINE | ID: mdl-37463076

RESUMEN

Granger causality-based effective brain connectivity provides a powerful tool to probe the neural mechanism for information processing and the potential features for brain computer interfaces. However, in real applications, traditional Granger causality is prone to the influence of outliers, such as inevitable ocular artifacts, resulting in unreasonable brain linkages and the failure to decipher inherent cognition states. In this work, motivated by constructing the sparse causality brain networks under the strong physiological outlier noise conditions, we proposed a dual Laplacian Granger causality analysis (DLap-GCA) by imposing Laplacian distributions on both model parameters and residuals. In essence, the first Laplacian assumption on residuals will resist the influence of outliers in electroencephalogram (EEG) on causality inference, and the second Laplacian assumption on model parameters will sparsely characterize the intrinsic interactions among multiple brain regions. Through simulation study, we quantitatively verified its effectiveness in suppressing the influence of complex outliers, the stable capacity for model estimation, and sparse network inference. The application to motor-imagery (MI) EEG further reveals that our method can effectively capture the inherent hemispheric lateralization of MI tasks with sparse patterns even under strong noise conditions. The MI classification based on the network features derived from the proposed approach shows higher accuracy than other existing traditional approaches, which is attributed to the discriminative network structures being captured in a timely manner by DLap-GCA even under the single-trial online condition. Basically, these results consistently show its robustness to the influence of complex outliers and the capability of characterizing representative brain networks for cognition information processing, which has the potential to offer reliable network structures for both cognitive studies and future brain-computer interface (BCI) realization.

20.
J Neural Eng ; 20(5)2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37659391

RESUMEN

Objective. The decision-making behavior of the proposer is a key factor in achieving effective and equitable maintenance of social resources, particularly in economic interactions, and thus understanding the neurocognitive basis of the proposer's decision-making is a crucial issue. Yet the neural substrate of the proposer's decision behavior, especially from the resting-state network perspective, remains unclear.Approach. In this study, we investigated the relationship between the resting-state network and decision proposals and further established a multivariable model to predict the proposers' unfair offer rates in the ultimatum game.Main results.The results indicated the unfair offer rates of proposers are significantly related to the resting-state frontal-occipital and frontal-parietal connectivity in the delta band, as well as the network properties. And compared to the conservative decision group (low unfair offer rate), the risk decision group (high unfair offer rate) exhibited stronger resting-state long-range linkages. Finally, the established multivariable model did accurately predict the unfair offer rates of the proposers, along with a correlation coefficient of 0.466 between the actual and predicted behaviors.Significance. Together, these findings demonstrated that related resting-state frontal-occipital and frontal-parietal connectivity may serve as a dispositional indicator of the risky behaviors for the proposers and subsequently predict a highly complex decision-making behavior, which contributed to the development of artificial intelligence decision-making system with biological characteristics as well.


Asunto(s)
Inteligencia Artificial , Toma de Decisiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA