Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Phys Chem A ; 126(32): 5265-5272, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35939333

RESUMEN

We study intramolecular electron transfer in the single-molecule magnetic complex [Mn12O12(O2CR)16 (H2O)4] for R = -H, -CH3, -CHCl2, -C6H5, and -C6H4F ligands as a mechanism for switching of the molecular dipole moment. Energetics is obtained using the density functional theory (DFT) with onsite Coulomb energy correction (DFT + U). Lattice distortions are found to be critical for localizing an extra electron on one of the easy sites on the outer ring in which localized states can be stabilized. We find that the lowest-energy path for charge transfer is for the electron to go through the center via superexchange-mediated tunneling. The energy barrier for such a path ranges from 0.4 to 54 meV depending on the ligands and the isomeric form of the complex. The electric field strength needed to move the charge from one end to the other, thus reversing the dipole moment, is 0.01-0.04 V/Å.

2.
Eur J Inorg Chem ; 2012(23)2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24496308

RESUMEN

Two water-soluble iron-pyrazolato complexes, [Fe8], have been prepared by the introduction of twelve hydroxyalkyl groups to the periphery of the approximately spherical octanuclear molecule and they are contrasted with their two organosoluble chloroalkyl analogues. All four new complexes, 1 - 4, have been characterized in solution by 1H-NMR and electrospray ionization mass spectroscopy. The one-electron reduction product of the water-soluble 3, [Fe8]-, has been structurally characterized by single crystal diffraction methods. In aqueous media, the four terminal Fe-Cl bonds of [Fe8] are partially hydrolysed and the resulting chloro/aqua/hydroxo species form supramolecular nanoscale aggregates, as determined by dynamic light scattering and electron microscopy. Preliminary computational studies by density functional theory methods have been employed in order to model the H-bonding interactions controlling the competing solvation and aggregation processes.

3.
Front Genet ; 6: 213, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26150827

RESUMEN

Nanopore DNA sequencing via transverse current has emerged as a promising candidate for third-generation sequencing technology. It produces long read lengths which could alleviate problems with assembly errors inherent in current technologies. However, the high error rates of nanopore sequencing have to be addressed. A very important source of the error is the intrinsic noise in the current arising from carrier dispersion along the chain of the molecule, i.e., from the influence of neighboring bases. In this work we perform calculations of the transverse current within an effective multi-orbital tight-binding model derived from first-principles calculations of the DNA/RNA molecules, to study the effect of this structural noise on the error rates in DNA/RNA sequencing via transverse current in nanopores. We demonstrate that a statistical technique, utilizing not only the currents through the nucleotides but also the correlations in the currents, can in principle reduce the error rate below any desired precision.

4.
J Chem Theory Comput ; 6(5): 1650-9, 2010 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-26615697

RESUMEN

We present here a method that can calculate NMR shielding tensors from first principles for systems with translational invariance. Our approach is based on Kohn-Sham density functional theory and gauge-including atomic orbitals. Our scheme determines the shielding tensor as the second derivative of the total electronic energy with respect to an external magnetic field and a nuclear magnetic moment. The induced current density due to a periodic perturbation from nuclear magnetic moments is obtained through numerical differentiation, whereas the influence of the responding perturbation in terms of the external magnetic field is evaluated analytically. The method is implemented into the periodic program BAND. It employs a Bloch basis set made up of Slater-type or numeric atomic orbitals and represents the Kohn-Sham potential fully without the use of effective core potentials. Results from calculations of NMR shielding constants based on the present approach are presented for isolated molecules as well as systems with one-, two- and three-dimensional periodicity. The reported values are compared to experiment and results from calculations on cluster models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA