Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
EMBO J ; 41(2): e109445, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34931323

RESUMEN

Genetically diverse pluripotent stem cells display varied, heritable responses to differentiation cues. Here, we harnessed these disparities through derivation of mouse embryonic stem cells from the BXD genetic reference panel, along with C57BL/6J (B6) and DBA/2J (D2) parental strains, to identify loci regulating cell state transitions. Upon transition to formative pluripotency, B6 stem cells quickly dissolved naïve networks adopting gene expression modules indicative of neuroectoderm lineages, whereas D2 retained aspects of naïve pluripotency. Spontaneous formation of embryoid bodies identified divergent differentiation where B6 showed a propensity toward neuroectoderm and D2 toward definitive endoderm. Genetic mapping identified major trans-acting loci co-regulating chromatin accessibility and gene expression in both naïve and formative pluripotency. These loci distally modulated occupancy of pluripotency factors at hundreds of regulatory elements. One trans-acting locus on Chr 12 primarily impacted chromatin accessibility in embryonic stem cells, while in epiblast-like cells, the same locus subsequently influenced expression of genes enriched for neurogenesis, suggesting early chromatin priming. These results demonstrate genetically determined biases in lineage commitment and identify major regulators of the pluripotency epigenome.


Asunto(s)
Diferenciación Celular , Epigenoma , Células Madre Embrionarias de Ratones/metabolismo , Animales , Linaje de la Célula , Ensamble y Desensamble de Cromatina , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Ratones , Ratones Endogámicos DBA , Células Madre Embrionarias de Ratones/citología , Secuencias Reguladoras de Ácidos Nucleicos
2.
Circulation ; 143(8): 821-836, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33297741

RESUMEN

BACKGROUND: Ischemic heart disease is a leading cause of heart failure and despite advanced therapeutic options, morbidity and mortality rates remain high. Although acute inflammation in response to myocardial cell death has been extensively studied, subsequent adaptive immune activity and anti-heart autoimmunity may also contribute to the development of heart failure. After ischemic injury to the myocardium, dendritic cells (DC) respond to cardiomyocyte necrosis, present cardiac antigen to T cells, and potentially initiate a persistent autoimmune response against the heart. Cross-priming DC have the ability to activate both CD4+ helper and CD8+ cytotoxic T cells in response to necrotic cells and may thus be crucial players in exacerbating autoimmunity targeting the heart. This study investigates a role for cross-priming DC in post-myocardial infarction immunopathology through presentation of self-antigen from necrotic cardiac cells to cytotoxic CD8+ T cells. METHODS: We induced type 2 myocardial infarction-like ischemic injury in the heart by treatment with a single high dose of the ß-adrenergic agonist isoproterenol. We characterized the DC population in the heart and mediastinal lymph nodes and analyzed long-term cardiac immunopathology and functional decline in wild type and Clec9a-depleted mice lacking DC cross-priming function. RESULTS: A diverse DC population, including cross-priming DC, is present in the heart and activated after ischemic injury. Clec9a-/- mice deficient in DC cross-priming are protected from persistent immune-mediated myocardial damage and decline of cardiac function, likely because of dampened activation of cytotoxic CD8+ T cells. CONCLUSION: Activation of cytotoxic CD8+ T cells by cross-priming DC contributes to exacerbation of postischemic inflammatory damage of the myocardium and corresponding decline in cardiac function. Importantly, this provides novel therapeutic targets to prevent postischemic immunopathology and heart failure.


Asunto(s)
Reactividad Cruzada , Células Dendríticas/inmunología , Miocardio/patología , Animales , Presentación de Antígeno , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Femenino , Insuficiencia Cardíaca/patología , Humanos , Lectinas Tipo C/deficiencia , Lectinas Tipo C/genética , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Infarto del Miocardio/inmunología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/inmunología , Miocardio/metabolismo , Receptores de Quimiocina/metabolismo , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/genética
3.
Circulation ; 142(15): 1448-1463, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32795101

RESUMEN

BACKGROUND: Cardiac fibrosis is a key antecedent to many types of cardiac dysfunction including heart failure. Physiological factors leading to cardiac fibrosis have been recognized for decades. However, the specific cellular and molecular mediators that drive cardiac fibrosis, and the relative effect of disparate cell populations on cardiac fibrosis, remain unclear. METHODS: We developed a novel cardiac single-cell transcriptomic strategy to characterize the cardiac cellulome, the network of cells that forms the heart. This method was used to profile the cardiac cellular ecosystem in response to 2 weeks of continuous administration of angiotensin II, a profibrotic stimulus that drives pathological cardiac remodeling. RESULTS: Our analysis provides a comprehensive map of the cardiac cellular landscape uncovering multiple cell populations that contribute to pathological remodeling of the extracellular matrix of the heart. Two phenotypically distinct fibroblast populations, Fibroblast-Cilp and Fibroblast-Thbs4, emerged after induction of tissue stress to promote fibrosis in the absence of smooth muscle actin-expressing myofibroblasts, a key profibrotic cell population. After angiotensin II treatment, Fibroblast-Cilp develops as the most abundant fibroblast subpopulation and the predominant fibrogenic cell type. Mapping intercellular communication networks within the heart, we identified key intercellular trophic relationships and shifts in cellular communication after angiotensin II treatment that promote the development of a profibrotic cellular microenvironment. Furthermore, the cellular responses to angiotensin II and the relative abundance of fibrogenic cells were sexually dimorphic. CONCLUSIONS: These results offer a valuable resource for exploring the cardiac cellular landscape in health and after chronic cardiovascular stress. These data provide insights into the cellular and molecular mechanisms that promote pathological remodeling of the mammalian heart, highlighting early transcriptional changes that precede chronic cardiac fibrosis.


Asunto(s)
Cardiomegalia/metabolismo , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Miocardio/metabolismo , Análisis de la Célula Individual , Estrés Fisiológico , Animales , Cardiomegalia/patología , Fibroblastos/patología , Fibrosis , Ratones , Miocardio/patología , Pirofosfatasas/metabolismo , Trombospondinas/metabolismo
4.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669808

RESUMEN

Recent technological advances have revolutionized the study of tissue biology and garnered a greater appreciation for tissue complexity. In order to understand cardiac development, heart tissue homeostasis, and the effects of stress and injury on the cardiovascular system, it is essential to characterize the heart at high cellular resolution. Single-cell profiling provides a more precise definition of tissue composition, cell differentiation trajectories, and intercellular communication, compared to classical bulk approaches. Here, we aim to review how recent single-cell multi-omic studies have changed our understanding of cell dynamics during cardiac development, and in the healthy and diseased adult myocardium.


Asunto(s)
Sistema Cardiovascular/citología , Análisis de la Célula Individual , Transcriptoma/genética , Animales , COVID-19/genética , COVID-19/patología , Reprogramación Celular/genética , Desarrollo Embrionario/genética , Humanos
5.
Nucleic Acids Res ; 46(D1): D843-D850, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29136208

RESUMEN

The Mouse Phenome Database (MPD; https://phenome.jax.org) is a widely used resource that provides access to primary experimental trait data, genotypic variation, protocols and analysis tools for mouse genetic studies. Data are contributed by investigators worldwide and represent a broad scope of phenotyping endpoints and disease-related traits in naïve mice and those exposed to drugs, environmental agents or other treatments. MPD houses individual animal data with detailed, searchable protocols, and makes these data available to other resources via API. MPD provides rigorous curation of experimental data and supporting documentation using relevant ontologies and controlled vocabularies. Most data in MPD are from inbreds and other reproducible strains such that the data are cumulative over time and across laboratories. The resource has been expanded to include the QTL Archive and other primary phenotype data from mapping crosses as well as advanced high-diversity mouse populations including the Collaborative Cross and Diversity Outbred mice. Furthermore, MPD provides a means of assessing replicability and reproducibility across experimental conditions and protocols, benchmarking assays in users' own laboratories, identifying sensitized backgrounds for making new mouse models with genome editing technologies, analyzing trait co-inheritance, finding the common genetic basis for multiple traits and assessing sex differences and sex-by-genotype interactions.


Asunto(s)
Curaduría de Datos , Bases de Datos Factuales , Ratones/genética , Fenotipo , Animales , Presentación de Datos , Bases de Datos Genéticas , Femenino , Edición Génica , Estudios de Asociación Genética , Variación Genética , Masculino , Ratones Endogámicos , Ratones Mutantes , Reproducibilidad de los Resultados , Caracteres Sexuales
6.
Genome Res ; 25(5): 762-74, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25840857

RESUMEN

Saccharomyces cerevisiae, a well-established model for species as diverse as humans and pathogenic fungi, is more recently a model for population and quantitative genetics. S. cerevisiae is found in multiple environments-one of which is the human body-as an opportunistic pathogen. To aid in the understanding of the S. cerevisiae population and quantitative genetics, as well as its emergence as an opportunistic pathogen, we sequenced, de novo assembled, and extensively manually edited and annotated the genomes of 93 S. cerevisiae strains from multiple geographic and environmental origins, including many clinical origin strains. These 93 S. cerevisiae strains, the genomes of which are near-reference quality, together with seven previously sequenced strains, constitute a novel genetic resource, the "100-genomes" strains. Our sequencing coverage, high-quality assemblies, and annotation provide unprecedented opportunities for detailed interrogation of complex genomic loci, examples of which we demonstrate. We found most phenotypic variation to be quantitative and identified population, genotype, and phenotype associations. Importantly, we identified clinical origin associations. For example, we found that an introgressed PDR5 was present exclusively in clinical origin mosaic group strains; that the mosaic group was significantly enriched for clinical origin strains; and that clinical origin strains were much more copper resistant, suggesting that copper resistance contributes to fitness in the human host. The 100-genomes strains are a novel, multipurpose resource to advance the study of S. cerevisiae population genetics, quantitative genetics, and the emergence of an opportunistic pathogen.


Asunto(s)
Mapeo Contig/métodos , Genoma Fúngico , Genotipo , Fenotipo , Polimorfismo Genético , Saccharomyces cerevisiae/genética , Alineación de Secuencia/métodos , Filogenia , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/patogenicidad , Virulencia/genética
7.
Proc Biol Sci ; 284(1852)2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28404772

RESUMEN

Natural selection has the potential to act on all phenotypes, including genomic mutation rate. Classic evolutionary theory predicts that in asexual populations, mutator alleles, which cause high mutation rates, can fix due to linkage with beneficial mutations. This phenomenon has been demonstrated experimentally and may explain the frequency of mutators found in bacterial pathogens. By contrast, in sexual populations, recombination decouples mutator alleles from beneficial mutations, preventing mutator fixation. In the facultatively sexual yeast Saccharomyces cerevisiae, segregating alleles of MLH1 and PMS1 have been shown to be incompatible, causing a high mutation rate when combined. These alleles had never been found together naturally, but were recently discovered in a cluster of clinical isolates. Here we report that the incompatible mutator allele combination only marginally elevates mutation rate in these clinical strains. Genomic and phylogenetic analyses provide no evidence of a historically elevated mutation rate. We conclude that the effect of the mutator alleles is dampened by background genetic modifiers. Thus, the relationship between mutation rate and microbial pathogenicity may be more complex than once thought. Our findings provide rare observational evidence that supports evolutionary theory suggesting that sexual organisms are unlikely to harbour alleles that increase their genomic mutation rate.


Asunto(s)
Evolución Molecular , Tasa de Mutación , Saccharomyces cerevisiae/genética , Alelos , Mutación , Filogenia , Selección Genética
8.
Genome Res ; 23(9): 1496-504, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23720455

RESUMEN

To better understand the quantitative characteristics and structure of phenotypic diversity, we measured over 14,000 transcript, protein, metabolite, and morphological traits in 22 genetically diverse strains of Saccharomyces cerevisiae. More than 50% of all measured traits varied significantly across strains [false discovery rate (FDR) = 5%]. The structure of phenotypic correlations is complex, with 85% of all traits significantly correlated with at least one other phenotype (median = 6, maximum = 328). We show how high-dimensional molecular phenomics data sets can be leveraged to accurately predict phenotypic variation between strains, often with greater precision than afforded by DNA sequence information alone. These results provide new insights into the spectrum and structure of phenotypic diversity and the characteristics influencing the ability to accurately predict phenotypes.


Asunto(s)
Genoma Fúngico , Fenotipo , Saccharomyces cerevisiae/genética , Variación Genética , Sitios de Carácter Cuantitativo , Saccharomyces cerevisiae/metabolismo , Transcriptoma
9.
FEMS Yeast Res ; 15(8)2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26463005

RESUMEN

We determined that extrachromosomal 2µ plasmid was present in 67 of the Saccharomyces cerevisiae 100-genome strains; in addition to variation in the size and copy number of 2µ, we identified three distinct classes of 2µ. We identified 2µ presence/absence and class associations with populations, clinical origin and nuclear genotypes. We also screened genome sequences of S. paradoxus, S. kudriavzevii, S. uvarum, S. eubayanus, S. mikatae, S. arboricolus and S. bayanus strains for both integrated and extrachromosomal 2µ. Similar to S. cerevisiae, we found no integrated 2µ sequences in any S. paradoxus strains. However, we identified part of 2µ integrated into the genomes of some S. uvarum, S. kudriavzevii, S. mikatae and S. bayanus strains, which were distinct from each other and from all extrachromosomal 2µ. We identified extrachromosomal 2µ in one S. paradoxus, one S. eubayanus, two S. bayanus and 13 S. uvarum strains. The extrachromosomal 2µ in S. paradoxus, S. eubayanus and S. cerevisiae were distinct from each other. In contrast, the extrachromosomal 2µ in S. bayanus and S. uvarum strains were identical with each other and with one of the three classes of S. cerevisiae 2µ, consistent with interspecific transfer.


Asunto(s)
Secuencias Repetitivas Esparcidas , Plásmidos , Saccharomyces/genética , Variación Genética , Saccharomyces/clasificación
10.
Mol Biol Evol ; 30(7): 1605-13, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23619145

RESUMEN

Noncoding genetic variation is known to significantly influence gene expression levels in a growing number of specific cases; however, the patterns of genome-wide noncoding variation present within populations, the evolutionary forces acting on noncoding variants, and the relative effects of regulatory polymorphisms on transcript abundance are not well characterized. Here, we address these questions by analyzing patterns of regulatory variation in motifs for 177 DNA binding proteins in 37 strains of Saccharomyces cerevisiae. Between S. cerevisiae strains, we found considerable polymorphism in regulatory motifs across strains (mean π = 0.005) as well as diversity in regulatory motifs (mean 0.91 motifs differences per regulatory region). Population genetics analyses reveal that motifs are under purifying selection, and there is considerable heterogeneity in the magnitude of selection across different motifs. Finally, we obtained RNA-Seq data in 22 strains and identified 49 polymorphic DNA sequence motifs in 30 distinct genes that are significantly associated with transcriptional differences between strains. In 22 of these genes, there was a single polymorphic motif associated with expression in the upstream region. Our results provide comprehensive insights into the evolutionary trajectory of regulatory variation in yeast and the characteristics of a compendium of regulatory alleles.


Asunto(s)
Proteínas de Unión al ADN/genética , Motivos de Nucleótidos/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Saccharomyces cerevisiae/genética , Sitios de Unión , Evolución Molecular , Regulación Fúngica de la Expresión Génica , Variación Genética , Genoma Fúngico , Metagenómica , Filogenia , Regiones Promotoras Genéticas , Activación Transcripcional/genética
11.
Genome Res ; 21(10): 1728-37, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21873452

RESUMEN

Variation in gene expression is thought to make a significant contribution to phenotypic diversity among individuals within populations. Although high-throughput cDNA sequencing offers a unique opportunity to delineate the genome-wide architecture of regulatory variation, new statistical methods need to be developed to capitalize on the wealth of information contained in RNA-seq data sets. To this end, we developed a powerful and flexible hierarchical Bayesian model that combines information across loci to allow both global and locus-specific inferences about allele-specific expression (ASE). We applied our methodology to a large RNA-seq data set obtained in a diploid hybrid of two diverse Saccharomyces cerevisiae strains, as well as to RNA-seq data from an individual human genome. Our statistical framework accurately quantifies levels of ASE with specified false-discovery rates, achieving high reproducibility between independent sequencing platforms. We pinpoint loci that show unusual and biologically interesting patterns of ASE, including allele-specific alternative splicing and transcription termination sites. Our methodology provides a rigorous, quantitative, and high-resolution tool for profiling ASE across whole genomes.


Asunto(s)
Alelos , Expresión Génica , Modelos Genéticos , Análisis de Secuencia de ARN , Empalme Alternativo , Teorema de Bayes , Humanos , Cadenas de Markov , Método de Montecarlo , Polimorfismo de Nucleótido Simple , Curva ROC , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
12.
Elife ; 122024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669177

RESUMEN

Gene expression is known to be affected by interactions between local genetic variation and DNA accessibility, with the latter organized into three-dimensional chromatin structures. Analyses of these interactions have previously been limited, obscuring their regulatory context, and the extent to which they occur throughout the genome. Here, we undertake a genome-scale analysis of these interactions in a genetically diverse population to systematically identify global genetic-epigenetic interaction, and reveal constraints imposed by chromatin structure. We establish the extent and structure of genotype-by-epigenotype interaction using embryonic stem cells derived from Diversity Outbred mice. This mouse population segregates millions of variants from eight inbred founders, enabling precision genetic mapping with extensive genotypic and phenotypic diversity. With 176 samples profiled for genotype, gene expression, and open chromatin, we used regression modeling to infer genetic-epigenetic interactions on a genome-wide scale. Our results demonstrate that statistical interactions between genetic variants and chromatin accessibility are common throughout the genome. We found that these interactions occur within the local area of the affected gene, and that this locality corresponds to topologically associated domains (TADs). The likelihood of interaction was most strongly defined by the three-dimensional (3D) domain structure rather than linear DNA sequence. We show that stable 3D genome structure is an effective tool to guide searches for regulatory elements and, conversely, that regulatory elements in genetically diverse populations provide a means to infer 3D genome structure. We confirmed this finding with CTCF ChIP-seq that revealed strain-specific binding in the inbred founder mice. In stem cells, open chromatin participating in the most significant regression models demonstrated an enrichment for developmental genes and the TAD-forming CTCF-binding complex, providing an opportunity for statistical inference of shifting TAD boundaries operating during early development. These findings provide evidence that genetic and epigenetic factors operate within the context of 3D chromatin structure.


Asunto(s)
Cromatina , Epigénesis Genética , Genoma , Animales , Ratones , Cromatina/metabolismo , Cromatina/genética , Variación Genética , Células Madre Embrionarias/metabolismo
13.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38659747

RESUMEN

Background: Age is the principal risk factor for neurodegeneration in both the retina and brain. The retina and brain share many biological properties; thus, insights into retinal aging and degeneration may shed light onto similar processes in the brain. Genetic makeup strongly influences susceptibility to age-related retinal disease. However, studies investigating retinal aging have not sufficiently accounted for genetic diversity. Therefore, examining molecular aging in the retina across different genetic backgrounds will enhance our understanding of human-relevant aging and degeneration in both the retina and brain-potentially improving therapeutic approaches to these debilitating conditions. Methods: Transcriptomics and proteomics were employed to elucidate retinal aging signatures in nine genetically diverse mouse strains (C57BL/6J, 129S1/SvlmJ, NZO/HlLtJ, WSB/EiJ, CAST/EiJ, PWK/PhK, NOD/ShiLtJ, A/J, and BALB/cJ) across lifespan. These data predicted human disease-relevant changes in WSB and NZO strains. Accordingly, B6, WSB and NZO mice were subjected to human-relevant in vivo examinations at 4, 8, 12, and/or 18M, including: slit lamp, fundus imaging, optical coherence tomography, fluorescein angiography, and pattern/full-field electroretinography. Retinal morphology, vascular structure, and cell counts were assessed ex vivo. Results: We identified common molecular aging signatures across the nine mouse strains, which included genes associated with photoreceptor function and immune activation. Genetic background strongly modulated these aging signatures. Analysis of cell type-specific marker genes predicted age-related loss of photoreceptors and retinal ganglion cells (RGCs) in WSB and NZO, respectively. Fundus exams revealed retinitis pigmentosa-relevant pigmentary abnormalities in WSB retinas and diabetic retinopathy (DR)-relevant cotton wool spots and exudates in NZO retinas. Profound photoreceptor dysfunction and loss were confirmed in WSB. Molecular analyses indicated changes in photoreceptor-specific proteins prior to loss, suggesting photoreceptor-intrinsic dysfunction in WSB. In addition, age-associated RGC dysfunction, loss, and concomitant microvascular dysfunction was observed in NZO mice. Proteomic analyses revealed an early reduction in protective antioxidant processes, which may underlie increased susceptibility to DR-relevant pathology in NZO. Conclusions: Genetic context is a strong determinant of retinal aging, and our multi-omics resource can aid in understanding age-related diseases of the eye and brain. Our investigations identified and validated WSB and NZO mice as improved preclinical models relevant to common retinal neurodegenerative diseases.

14.
bioRxiv ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39071392

RESUMEN

Identifying host genetic factors modulating immune checkpoint inhibitor (ICI) efficacy has been experimentally challenging because of variations in both host and tumor genomes, differences in the microbiome, and patient life exposures. Utilizing the Collaborative Cross (CC) multi-parent mouse genetic resource population, we developed an approach that fixes the tumor genomic configuration while varying host genetics. With this approach, we discovered that response to anti-PD-1 (aPD1) immunotherapy was significantly heritable in four distinct murine tumor models (H2 between 0.18-0.40). For the MC38 colorectal carcinoma system (H2 = 0.40), we mapped four significant ICI response quantitative trait loci (QTL) localized to mouse chromosomes (mChr) 5, 9, 15 and 17, and identified significant epistatic interactions between specific QTL pairs. Differentially expressed genes within these QTL were highly enriched for immune genes and pathways mediating allograft rejection and graft vs host disease. Using a cross species analytical approach, we found a core network of 48 genes within the four QTLs that showed significant prognostic value for overall survival in aPD1 treated human cohorts that outperformed all other existing validated immunotherapy biomarkers, especially in human tumors of the previously defined immune subtype 4. Functional blockade of two top candidate immune targets within the 48 gene network, GM-CSF and high affinity IL-2/IL-15 signaling, completely abrogated the MC38 tumor transcriptional response to aPD1 therapy in vivo. Thus, we have established a powerful cross species in vivo platform capable of uncovering host genetic factors that establish the tumor immune microenvironment configuration propitious for ICI response.

15.
G3 (Bethesda) ; 13(10)2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37497616

RESUMEN

We characterized previously identified RNA viruses (L-A, L-BC, 20S, and 23S), L-A-dependent M satellites (M1, M2, M28, and Mlus), and M satellite-dependent killer phenotypes in the Saccharomyces cerevisiae 100-genomes genetic resource population. L-BC was present in all strains, albeit in 2 distinct levels, L-BChi and L-BClo; the L-BC level is associated with the L-BC genotype. L-BChi, L-A, 20S, 23S, M1, M2, and Mlus (M28 was absent) were in fewer strains than the similarly inherited 2µ plasmid. Novel L-A-dependent phenotypes were identified. Ten M+ strains exhibited M satellite-dependent killing (K+) of at least 1 of the naturally M0 and cured M0 derivatives of the 100-genomes strains; in these M0 strains, sensitivities to K1+, K2+, and K28+ strains varied. Finally, to complement our M satellite-encoded killer toxin analysis, we assembled the chromosomal KHS1 and KHR1 killer genes and used naturally M0 and cured M0 derivatives of the 100-genomes strains to assess and characterize the chromosomal killer phenotypes.


Asunto(s)
Virus ARN , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , ARN Viral/genética , ARN Bicatenario , Virus ARN/genética , Fenotipo
16.
bioRxiv ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37214950

RESUMEN

Enhancers play a crucial role in regulating gene expression and their functional status can be queried with cell type precision using using single-cell (sc)ATAC-seq. To facilitate analysis of such data, we developed Enhlink, a novel computational approach that leverages single-cell signals to infer linkages between regulatory DNA sequences, such as enhancers and promoters. Enhlink uses an ensemble strategy that integrates cell-level technical covariates to control for batch effects and biological covariates to infer robust condition-specific links and their associated p-values. It can integrate simultaneous gene expression and chromatin accessibility measurements of individual cells profiled by multi-omic experiments for increased specificity. We evaluated Enhlink using simulated and real scATAC-seq data, including those paired with physical enhancer-promoter links enumerated by promoter capture Hi-C and with multi-omic scATAC-/RNA-seq data we generated from the mouse striatum. These examples demonstrated that our method outperforms popular alternative strategies. In conjunction with eQTL analysis, Enhlink revealed a putative super-enhancer regulating key cell type-specific markers of striatal neurons. Taken together, our analyses demonstrate that Enhlink is accurate, powerful, and provides features that can lead to novel biological insights.

17.
Cell Genom ; 3(4): 100283, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37082146

RESUMEN

Genetic background drives phenotypic variability in pluripotent stem cells (PSCs). Most studies to date have used transcript abundance as the primary molecular readout of cell state in PSCs. We performed a comprehensive proteogenomics analysis of 190 genetically diverse mouse embryonic stem cell (mESC) lines. The quantitative proteome is highly variable across lines, and we identified pluripotency-associated pathways that were differentially activated in the proteomics data that were not evident in transcriptome data from the same lines. Integration of protein abundance to transcript levels and chromatin accessibility revealed broad co-variation across molecular layers as well as shared and unique drivers of quantitative variation in pluripotency-associated pathways. Quantitative trait locus (QTL) mapping localized the drivers of these multi-omic signatures to genomic hotspots. This study reveals post-transcriptional mechanisms and genetic interactions that underlie quantitative variability in the pluripotent proteome and provides a regulatory map for mESCs that can provide a basis for future mechanistic studies.

18.
Annu Rev Genomics Hum Genet ; 10: 313-32, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19630563

RESUMEN

Variation in gene expression constitutes an important source of biological variability within and between populations that is likely to contribute significantly to phenotypic diversity. Recent conceptual, technical, and methodological advances have enabled the genome-scale dissection of transcriptional variation. Here, we outline common approaches for detecting gene expression quantitative trait loci, and summarize the insights gleaned from these studies regarding the genetic architecture of transcriptional variation and the nature of regulatory alleles. Particular emphasis is placed on human studies, and we discuss experimental designs that ensure that increasingly large and complex studies continue to advance our understanding of gene expression variation. We conclude by discussing the evolution of gene expression levels, and we explore prospects for leveraging new technological developments to investigate inherited variation in gene expression in even greater depth.


Asunto(s)
Alelos , Expresión Génica , Variación Genética , Patrón de Herencia , Animales , Evolución Molecular , Heterogeneidad Genética , Humanos
19.
Cell Rep ; 34(6): 108739, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33567283

RESUMEN

Genetic and genome-wide association studies suggest a central role for microglia in Alzheimer's disease (AD). However, single-cell RNA sequencing (scRNA-seq) of microglia in mice, a key preclinical model, has shown mixed results regarding translatability to human studies. To address this, scRNA-seq of microglia from C57BL/6J (B6) and wild-derived strains (WSB/EiJ, CAST/EiJ, and PWK/PhJ) with and without APP/PS1 demonstrates that genetic diversity significantly alters features and dynamics of microglia in baseline neuroimmune functions and in response to amyloidosis. Results show significant variation in the abundance of microglial subtypes or states, including numbers of previously identified disease-associated and interferon-responding microglia, across the strains. For each subtype, significant differences in the expression of many genes are observed in wild-derived strains relative to B6, including 19 genes previously associated with human AD including Apoe, Trem2, and Sorl1. This resource is critical in the development of appropriately targeted therapeutics for AD and other neurological diseases.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , RNA-Seq , Animales , Modelos Animales de Enfermedad , Variación Genética , Estudio de Asociación del Genoma Completo , Ratones , Especificidad de la Especie
20.
Elife ; 102021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33687326

RESUMEN

Little is known about the molecular changes that take place in the kidney during the aging process. In order to better understand these changes, we measured mRNA and protein levels in genetically diverse mice at different ages. We observed distinctive change in mRNA and protein levels as a function of age. Changes in both mRNA and protein are associated with increased immune infiltration and decreases in mitochondrial function. Proteins show a greater extent of change and reveal changes in a wide array of biological processes including unique, organ-specific features of aging in kidney. Most importantly, we observed functionally important age-related changes in protein that occur in the absence of corresponding changes in mRNA. Our findings suggest that mRNA profiling alone provides an incomplete picture of molecular aging in the kidney and that examination of changes in proteins is essential to understand aging processes that are not transcriptionally regulated.


Asunto(s)
Envejecimiento/genética , Riñón/fisiología , Proteoma/fisiología , Transcriptoma/fisiología , Animales , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA