Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nature ; 604(7906): 571-577, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418676

RESUMEN

Chromosome structure in mammals is thought to regulate transcription by modulating three-dimensional interactions between enhancers and promoters, notably through CTCF-mediated loops and topologically associating domains (TADs)1-4. However, how chromosome interactions are actually translated into transcriptional outputs remains unclear. Here, to address this question, we use an assay to position an enhancer at large numbers of densely spaced chromosomal locations relative to a fixed promoter, and measure promoter output and interactions within a genomic region with minimal regulatory and structural complexity. A quantitative analysis of hundreds of cell lines reveals that the transcriptional effect of an enhancer depends on its contact probabilities with the promoter through a nonlinear relationship. Mathematical modelling suggests that nonlinearity might arise from transient enhancer-promoter interactions being translated into slower promoter bursting dynamics in individual cells, therefore uncoupling the temporal dynamics of interactions from those of transcription. This uncovers a potential mechanism of how distal enhancers act from large genomic distances, and of how topologically associating domain boundaries block distal enhancers. Finally, we show that enhancer strength also determines absolute transcription levels as well as the sensitivity of a promoter to CTCF-mediated transcriptional insulation. Our measurements establish general principles for the context-dependent role of chromosome structure in long-range transcriptional regulation.


Asunto(s)
Cromosomas , Elementos de Facilitación Genéticos , Animales , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Genómica , Mamíferos/genética , Regiones Promotoras Genéticas/genética
2.
Nature ; 596(7870): 133-137, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34234345

RESUMEN

The majority of gene transcripts generated by RNA polymerase II in mammalian genomes initiate at CpG island (CGI) promoters1,2, yet our understanding of their regulation remains limited. This is in part due to the incomplete information that we have on transcription factors, their DNA-binding motifs and which genomic binding sites are functional in any given cell type3-5. In addition, there are orphan motifs without known binders, such as the CGCG element, which is associated with highly expressed genes across human tissues and enriched near the transcription start site of a subset of CGI promoters6-8. Here we combine single-molecule footprinting with interaction proteomics to identify BTG3-associated nuclear protein (BANP) as the transcription factor that binds this element in the mouse and human genome. We show that BANP is a strong CGI activator that controls essential metabolic genes in pluripotent stem and terminally differentiated neuronal cells. BANP binding is repelled by DNA methylation of its motif in vitro and in vivo, which epigenetically restricts most binding to CGIs and accounts for differential binding at aberrantly methylated CGI promoters in cancer cells. Upon binding to an unmethylated motif, BANP opens chromatin and phases nucleosomes. These findings establish BANP as a critical activator of a set of essential genes and suggest a model in which the activity of CGI promoters relies on methylation-sensitive transcription factors that are capable of chromatin opening.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/genética , Cromatina/metabolismo , Islas de CpG/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Animales , Secuencia de Bases , Línea Celular Tumoral , Cromatina/química , Ensamble y Desensamble de Cromatina/genética , Metilación de ADN , Regulación de la Expresión Génica , Genes Esenciales , Humanos , Ratones , Imagen Individual de Molécula
3.
EMBO J ; 40(12): e106818, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33909924

RESUMEN

Mouse embryonic stem cells (mESCs) are biased toward producing embryonic rather than extraembryonic endoderm fates. Here, we identify the mechanism of this barrier and report that the histone deacetylase Hdac3 and the transcriptional corepressor Dax1 cooperatively limit the lineage repertoire of mESCs by silencing an enhancer of the extraembryonic endoderm-specifying transcription factor Gata6. This restriction is opposed by the pluripotency transcription factors Nr5a2 and Esrrb, which promote cell type conversion. Perturbation of the barrier extends mESC potency and allows formation of 3D spheroids that mimic the spatial segregation of embryonic epiblast and extraembryonic endoderm in early embryos. Overall, this study shows that transcriptional repressors stabilize pluripotency by biasing the equilibrium between embryonic and extraembryonic lineages that is hardwired into the mESC transcriptional network.


Asunto(s)
Receptor Nuclear Huérfano DAX-1 , Histona Desacetilasas , Células Madre Embrionarias de Ratones/citología , Animales , Diferenciación Celular , Células Cultivadas , Receptor Nuclear Huérfano DAX-1/genética , Receptor Nuclear Huérfano DAX-1/metabolismo , Femenino , Factor de Transcripción GATA6/genética , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Masculino , Ratones , ARN Interferente Pequeño/genética , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo
4.
Nature ; 576(7787): 487-491, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31827285

RESUMEN

Formation of the three primary germ layers during gastrulation is an essential step in the establishment of the vertebrate body plan and is associated with major transcriptional changes1-5. Global epigenetic reprogramming accompanies these changes6-8, but the role of the epigenome in regulating early cell-fate choice remains unresolved, and the coordination between different molecular layers is unclear. Here we describe a single-cell multi-omics map of chromatin accessibility, DNA methylation and RNA expression during the onset of gastrulation in mouse embryos. The initial exit from pluripotency coincides with the establishment of a global repressive epigenetic landscape, followed by the emergence of lineage-specific epigenetic patterns during gastrulation. Notably, cells committed to mesoderm and endoderm undergo widespread coordinated epigenetic rearrangements at enhancer marks, driven by ten-eleven translocation (TET)-mediated demethylation and a concomitant increase of accessibility. By contrast, the methylation and accessibility landscape of ectodermal cells is already established in the early epiblast. Hence, regulatory elements associated with each germ layer are either epigenetically primed or remodelled before cell-fate decisions, providing the molecular framework for a hierarchical emergence of the primary germ layers.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Gástrula/citología , Gástrula/metabolismo , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , ARN/genética , Análisis de la Célula Individual , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Cromatina/genética , Cromatina/metabolismo , Desmetilación , Cuerpos Embrioides/citología , Endodermo/citología , Endodermo/embriología , Endodermo/metabolismo , Elementos de Facilitación Genéticos/genética , Epigenoma/genética , Eritropoyesis , Análisis Factorial , Gástrula/embriología , Gastrulación/fisiología , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , ARN/análisis , Factores de Tiempo , Dedos de Zinc
5.
Mol Cell ; 60(4): 611-25, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26549683

RESUMEN

The integrity of chromatin, which provides a dynamic template for all DNA-related processes in eukaryotes, is maintained through replication-dependent and -independent assembly pathways. To address the role of histone deposition in the absence of DNA replication, we deleted the H3.3 chaperone Hira in developing mouse oocytes. We show that chromatin of non-replicative developing oocytes is dynamic and that lack of continuous H3.3/H4 deposition alters chromatin structure, resulting in increased DNase I sensitivity, the accumulation of DNA damage, and a severe fertility phenotype. On the molecular level, abnormal chromatin structure leads to a dramatic decrease in the dynamic range of gene expression, the appearance of spurious transcripts, and inefficient de novo DNA methylation. Our study thus unequivocally shows the importance of continuous histone replacement and chromatin homeostasis for transcriptional regulation and normal developmental progression in a non-replicative system in vivo.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Oogénesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Metilación de ADN , Femenino , Fertilización , Regulación de la Expresión Génica , Ratones , Oocitos/metabolismo , Transcripción Genética
6.
Genes Dev ; 29(23): 2449-62, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26584620

RESUMEN

Erasure and subsequent reinstatement of DNA methylation in the germline, especially at imprinted CpG islands (CGIs), is crucial to embryogenesis in mammals. The mechanisms underlying DNA methylation establishment remain poorly understood, but a number of post-translational modifications of histones are implicated in antagonizing or recruiting the de novo DNA methylation complex. In mouse oogenesis, DNA methylation establishment occurs on a largely unmethylated genome and in nondividing cells, making it a highly informative model for examining how histone modifications can shape the DNA methylome. Using a chromatin immunoprecipitation (ChIP) and genome-wide sequencing (ChIP-seq) protocol optimized for low cell numbers and novel techniques for isolating primary and growing oocytes, profiles were generated for histone modifications implicated in promoting or inhibiting DNA methylation. CGIs destined for DNA methylation show reduced protective H3K4 dimethylation (H3K4me2) and trimethylation (H3K4me3) in both primary and growing oocytes, while permissive H3K36me3 increases specifically at these CGIs in growing oocytes. Methylome profiling of oocytes deficient in H3K4 demethylase KDM1A or KDM1B indicated that removal of H3K4 methylation is necessary for proper methylation establishment at CGIs. This work represents the first systematic study performing ChIP-seq in oocytes and shows that histone remodeling in the mammalian oocyte helps direct de novo DNA methylation events.


Asunto(s)
Metilación de ADN , Código de Histonas , Oocitos/enzimología , Oogénesis/fisiología , Animales , Inmunoprecipitación de Cromatina , Islas de CpG , Citometría de Flujo , Histona Demetilasas/genética , Histonas/metabolismo , Ratones , Oxidorreductasas N-Desmetilantes/genética , Análisis de Secuencia de ADN
7.
J Biol Chem ; 297(2): 100947, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34270961

RESUMEN

Transcription factors (TFs) harboring broad-complex, tramtrack, and bric-a-brac (BTB) domains play important roles in development and disease. These BTB domains are thought to recruit transcriptional modulators to target DNA regions. However, a systematic molecular understanding of the mechanism of action of this TF family is lacking. Here, we identify the zinc finger BTB-TF Zbtb2 from a genetic screen for regulators of exit from pluripotency and demonstrate that its absence perturbs embryonic stem cell differentiation and the gene expression dynamics underlying peri-implantation development. We show that ZBTB2 binds the chromatin remodeler Ep400 to mediate downstream transcription. Independently, the BTB domain directly interacts with nucleosome remodeling and deacetylase and histone chaperone histone regulator A. Nucleosome remodeling and deacetylase recruitment is a common feature of BTB TFs, and based on phylogenetic analysis, we propose that this is a conserved evolutionary property. Binding to UBN2, in contrast, is specific to ZBTB2 and requires a C-terminal extension of the BTB domain. Taken together, this study identifies a BTB-domain TF that recruits chromatin modifiers and a histone chaperone during a developmental cell state transition and defines unique and shared molecular functions of the BTB-domain TF family.


Asunto(s)
Proteínas Represoras , Factores de Transcripción , Dominio BTB-POZ , Chaperonas de Histonas , Humanos , Filogenia , Dedos de Zinc
8.
Nat Methods ; 13(3): 229-232, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26752769

RESUMEN

We report scM&T-seq, a method for parallel single-cell genome-wide methylome and transcriptome sequencing that allows for the discovery of associations between transcriptional and epigenetic variation. Profiling of 61 mouse embryonic stem cells confirmed known links between DNA methylation and transcription. Notably, the method revealed previously unrecognized associations between heterogeneously methylated distal regulatory elements and transcription of key pluripotency genes.


Asunto(s)
Células Madre Embrionarias/fisiología , Epigénesis Genética/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Elementos Reguladores de la Transcripción/genética , Factores de Transcripción/genética , Animales , Secuencia de Bases , Células Cultivadas , Ratones , Datos de Secuencia Molecular
9.
Nat Methods ; 11(8): 817-820, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25042786

RESUMEN

We report a single-cell bisulfite sequencing (scBS-seq) method that can be used to accurately measure DNA methylation at up to 48.4% of CpG sites. Embryonic stem cells grown in serum or in 2i medium displayed epigenetic heterogeneity, with '2i-like' cells present in serum culture. Integration of 12 individual mouse oocyte datasets largely recapitulated the whole DNA methylome, which makes scBS-seq a versatile tool to explore DNA methylation in rare cells and heterogeneous populations.


Asunto(s)
Epigénesis Genética , Genoma , Sulfitos/química , Animales , Metilación de ADN , Ratones
10.
Genes Dev ; 23(1): 105-17, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19136628

RESUMEN

Genomic imprinting requires the differential marking by DNA methylation of genes in male and female gametes. In the female germline, acquisition of methylation imprint marks depends upon the de novo methyltransferase Dnmt3a and its cofactor Dnmt3L, but the reasons why specific sequences are targets for Dnmt3a and Dnmt3L are still poorly understood. Here, we investigate the role of transcription in establishing maternal germline methylation marks. We show that at the Gnas locus, truncating transcripts from the furthest upstream Nesp promoter disrupts oocyte-derived methylation of the differentially methylated regions (DMRs). Transcription through DMRs in oocytes is not restricted to this locus but occurs across the prospective DMRs at many other maternally marked imprinted domains, suggesting a common requirement for transcription events. The transcripts implicated here in gametic methylation are protein-coding, in contrast to the noncoding antisense transcripts involved in the monoallelic silencing of imprinted genes in somatic tissues, although they often initiate from alternative promoters in oocytes. We propose that transcription is a third essential component of the de novo methylation system, which includes optimal CpG spacing and histone modifications, and may be required to create or maintain open chromatin domains to allow the methylation complex access to its preferred targets.


Asunto(s)
Metilación de ADN/fisiología , Impresión Genómica/genética , Oocitos/metabolismo , Transcripción Genética/genética , Alelos , Animales , Cromograninas , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular
11.
Trends Genet ; 28(1): 33-42, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22019337

RESUMEN

DNA methylation is a fundamentally important epigenetic modification of the mammalian genome that has widespread influences on gene expression. During germ-cell specification and maturation, epigenetic reprogramming occurs and the DNA methylation landscape is profoundly remodelled. Defects in this process have major consequences for embryonic development and are associated with several genetic disorders. In this review we report our current understanding of the molecular mechanisms associated with de novo DNA methylation in germ cells. We discuss recent discoveries connecting histone modifications, transcription and the DNA methylation machinery, and consider how these new findings could lead to a model for methylation establishment. Elucidating how DNA methylation marks are established in the germline has been a challenge for nearly 20 years, but represents a key step towards a full understanding of several biological processes including genomic imprinting, epigenetic reprogramming and the establishment of the pluripotent state in early embryos.


Asunto(s)
Metilación de ADN , Células Germinativas/metabolismo , Animales , Linaje de la Célula , Epigénesis Genética , Impresión Genómica , Células Germinativas/citología , Humanos , Transcripción Genética
12.
Nat Genet ; 54(12): 1907-1918, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36471076

RESUMEN

In mammals, interactions between sequences within topologically associating domains enable control of gene expression across large genomic distances. Yet it is unknown how frequently such contacts occur, how long they last and how they depend on the dynamics of chromosome folding and loop extrusion activity of cohesin. By imaging chromosomal locations at high spatial and temporal resolution in living cells, we show that interactions within topologically associating domains are transient and occur frequently during the course of a cell cycle. Interactions become more frequent and longer in the presence of convergent CTCF sites, resulting in suppression of variability in chromosome folding across time. Supported by physical models of chromosome dynamics, our data suggest that CTCF-anchored loops last around 10 min. Our results show that long-range transcriptional regulation might rely on transient physical proximity, and that cohesin and CTCF stabilize highly dynamic chromosome structures, facilitating selected subsets of chromosomal interactions.


Asunto(s)
Cromosomas , Cromosomas/genética
13.
Sci Adv ; 7(50): eabj6897, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34890235

RESUMEN

Mechanical input shapes cell fate decisions during development and regeneration in many systems, yet the mechanisms of this cross-talk are often unclear. In regenerating Hydra tissue spheroids, periodic osmotically driven inflation and deflation cycles generate mechanical stimuli in the form of tissue stretching. Here, we demonstrate that tissue stretching during inflation is important for the appearance of the head organizer­a group of cells that secrete the Wnt3 ligand. Exploiting time series RNA expression profiles, we identify the up-regulation of Wnt signaling as a key readout of the mechanical input. In this system, the levels of Wnt3 expression correspond to the levels of stretching, and Wnt3 overexpression alone enables successful regeneration in the absence of mechanical stimulation. Our findings enable the incorporation of mechanical signals in the framework of Hydra patterning and highlight the broad significance of mechanochemical feedback loops for patterning epithelial lumens.

14.
Nat Commun ; 11(1): 2680, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32471981

RESUMEN

DNA methylation is considered a stable epigenetic mark, yet methylation patterns can vary during differentiation and in diseases such as cancer. Local levels of DNA methylation result from opposing enzymatic activities, the rates of which remain largely unknown. Here we developed a theoretical and experimental framework enabling us to infer methylation and demethylation rates at 860,404 CpGs in mouse embryonic stem cells. We find that enzymatic rates can vary as much as two orders of magnitude between CpGs with identical steady-state DNA methylation. Unexpectedly, de novo and maintenance methylation activity is reduced at transcription factor binding sites, while methylation turnover is elevated in transcribed gene bodies. Furthermore, we show that TET activity contributes substantially more than passive demethylation to establishing low methylation levels at distal enhancers. Taken together, our work unveils a genome-scale map of methylation kinetics, revealing highly variable and context-specific activity for the DNA methylation machinery.


Asunto(s)
Islas de CpG/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Desmetilación del ADN , Metilación de ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Sitios de Unión/genética , Línea Celular , Mapeo Cromosómico , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Dioxigenasas/metabolismo , Epigénesis Genética/genética , Genoma/genética , Histonas/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética , ADN Metiltransferasa 3B
15.
Nat Struct Mol Biol ; 26(6): 471-480, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31133702

RESUMEN

Current understanding of chromosome folding is largely reliant on chromosome conformation capture (3C)-based experiments, where chromosomal interactions are detected as ligation products after chromatin crosslinking. To measure chromosome structure in vivo, quantitatively and without crosslinking and ligation, we implemented a modified version of DNA adenine methyltransferase identification (DamID) named DamC, which combines DNA methylation-based detection of chromosomal interactions with next-generation sequencing and biophysical modeling of methylation kinetics. DamC performed in mouse embryonic stem cells provides the first in vivo validation of the existence of topologically associating domains (TADs), CTCF loops and confirms 3C-based measurements of the scaling of contact probabilities. Combining DamC with transposon-mediated genomic engineering shows that new loops can be formed between ectopic and endogenous CTCF sites, which redistributes physical interactions within TADs. DamC provides the first crosslinking- and ligation-free demonstration of the existence of key structural features of chromosomes and provides novel insights into how chromosome structure within TADs can be manipulated.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Cromatina/metabolismo , Metilación de ADN , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Línea Celular , Cromatina/química , Cromosomas/química , Cromosomas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/química , Células Madre Embrionarias de Ratones/metabolismo , Conformación de Ácido Nucleico , Proteínas Recombinantes de Fusión/metabolismo
16.
Cell Stem Cell ; 24(2): 257-270.e8, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30595499

RESUMEN

Self-renewal and differentiation of pluripotent murine embryonic stem cells (ESCs) is regulated by extrinsic signaling pathways. It is less clear whether cellular metabolism instructs developmental progression. In an unbiased genome-wide CRISPR/Cas9 screen, we identified components of a conserved amino-acid-sensing pathway as critical drivers of ESC differentiation. Functional analysis revealed that lysosome activity, the Ragulator protein complex, and the tumor-suppressor protein Folliculin enable the Rag GTPases C and D to bind and seclude the bHLH transcription factor Tfe3 in the cytoplasm. In contrast, ectopic nuclear Tfe3 represses specific developmental and metabolic transcriptional programs that are associated with peri-implantation development. We show differentiation-specific and non-canonical regulation of Rag GTPase in ESCs and, importantly, identify point mutations in a Tfe3 domain required for cytoplasmic inactivation as potentially causal for a human developmental disorder. Our work reveals an instructive and biomedically relevant role of metabolic signaling in licensing embryonic cell fate transitions.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Diferenciación Celular , Lisosomas/metabolismo , Transducción de Señal , Alelos , Animales , Autorrenovación de las Células , Femenino , GTP Fosfohidrolasas/metabolismo , Genoma , Humanos , Masculino , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Fosforilación , Mutación Puntual/genética , Unión Proteica , Transcripción Genética
17.
Methods Mol Biol ; 1712: 87-95, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29224070

RESUMEN

DNA methylation is an epigenetic mark implicated in the regulation of key biological processes. Using high-throughput sequencing technologies and bisulfite-based approaches, it is possible to obtain comprehensive genome-wide maps of the mammalian DNA methylation landscape with a single-nucleotide resolution and absolute quantification. However, these methods were only applicable to bulk populations of cells. Here, we present a protocol to perform whole-genome bisulfite sequencing on single cells (scBS-Seq) using a post-bisulfite adapter tagging approach. In this method, bisulfite treatment is performed prior to library generation in order to both convert unmethylated cytosines and fragment DNA to an appropriate size. Then DNA fragments are pre-amplified with concomitant integration of the sequencing adapters, and libraries are subsequently amplified and indexed by PCR. Using scBS-Seq we can accurately measure DNA methylation at up to 50% of individual CpG sites and 70% of CpG islands.


Asunto(s)
Metilación de ADN/genética , Estudio de Asociación del Genoma Completo/métodos , Análisis de la Célula Individual/métodos , Sulfitos/química , Animales , Citosina/química , ADN/química , Epigenómica , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma
18.
Methods Mol Biol ; 1708: 161-169, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29224144

RESUMEN

The epigenetic mark 5-methylcytosine confers heritable regulation of gene expression that can be dynamically modulated during transitions in cell fate. With the development of high-throughput sequencing technologies, it is now possible to obtain comprehensive genome-wide maps of the mammalian DNA methylation landscape, but the application of these techniques to limited material remains challenging. Here, we present an optimized protocol to perform whole-genome bisulfite sequencing on low inputs (100-5000 somatic cells) using a post-bisulfite adapter tagging approach. In this strategy, bisulfite treatment is performed prior to library generation in order to both convert unmethylated cytosines and fragment DNA to an appropriate size. Then sequencing adapters are added by complementary strand synthesis using random tetramer priming, and libraries are subsequently amplified by PCR.


Asunto(s)
5-Metilcitosina/análisis , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación Completa del Genoma/métodos , Animales , Islas de CpG , Metilación de ADN , Epigénesis Genética , Biblioteca de Genes , Ratones , Tamaño de la Muestra , Sulfitos
19.
Cell Syst ; 7(1): 63-76.e12, 2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-30031774

RESUMEN

Pluripotency is accompanied by the erasure of parental epigenetic memory, with naïve pluripotent cells exhibiting global DNA hypomethylation both in vitro and in vivo. Exit from pluripotency and priming for differentiation into somatic lineages is associated with genome-wide de novo DNA methylation. We show that during this phase, co-expression of enzymes required for DNA methylation turnover, DNMT3s and TETs, promotes cell-to-cell variability in this epigenetic mark. Using a combination of single-cell sequencing and quantitative biophysical modeling, we show that this variability is associated with coherent, genome-scale oscillations in DNA methylation with an amplitude dependent on CpG density. Analysis of parallel single-cell transcriptional and epigenetic profiling provides evidence for oscillatory dynamics both in vitro and in vivo. These observations provide insights into the emergence of epigenetic heterogeneity during early embryo development, indicating that dynamic changes in DNA methylation might influence early cell fate decisions.


Asunto(s)
Metilación de ADN/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Células Madre Pluripotentes/metabolismo , Animales , Diferenciación Celular , Reprogramación Celular , Islas de CpG/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Embrión de Mamíferos/citología , Epigénesis Genética/genética , Epigenómica , Genoma , Impresión Genómica , Células Germinativas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/fisiología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología
20.
Nat Protoc ; 12(3): 534-547, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28182018

RESUMEN

DNA methylation (DNAme) is an important epigenetic mark in diverse species. Our current understanding of DNAme is based on measurements from bulk cell samples, which obscures intercellular differences and prevents analyses of rare cell types. Thus, the ability to measure DNAme in single cells has the potential to make important contributions to the understanding of several key biological processes, such as embryonic development, disease progression and aging. We have recently reported a method for generating genome-wide DNAme maps from single cells, using single-cell bisulfite sequencing (scBS-seq), allowing the quantitative measurement of DNAme at up to 50% of CpG dinucleotides throughout the mouse genome. Here we present a detailed protocol for scBS-seq that includes our most recent developments to optimize recovery of CpGs, mapping efficiency and success rate; reduce hands-on time; and increase sample throughput with the option of using an automated liquid handler. We provide step-by-step instructions for each stage of the method, comprising cell lysis and bisulfite (BS) conversion, preamplification and adaptor tagging, library amplification, sequencing and, lastly, alignment and methylation calling. An individual with relevant molecular biology expertise can complete library preparation within 3 d. Subsequent computational steps require 1-3 d for someone with bioinformatics expertise.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Análisis de la Célula Individual/métodos , Sulfitos/farmacología , Animales , Secuencia de Bases , Islas de CpG/genética , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA