Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
1.
Cell ; 184(26): 6262-6280.e26, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34910928

RESUMEN

Colorectal cancers (CRCs) arise from precursor polyps whose cellular origins, molecular heterogeneity, and immunogenic potential may reveal diagnostic and therapeutic insights when analyzed at high resolution. We present a single-cell transcriptomic and imaging atlas of the two most common human colorectal polyps, conventional adenomas and serrated polyps, and their resulting CRC counterparts. Integrative analysis of 128 datasets from 62 participants reveals adenomas arise from WNT-driven expansion of stem cells, while serrated polyps derive from differentiated cells through gastric metaplasia. Metaplasia-associated damage is coupled to a cytotoxic immune microenvironment preceding hypermutation, driven partly by antigen-presentation differences associated with tumor cell-differentiation status. Microsatellite unstable CRCs contain distinct non-metaplastic regions where tumor cells acquire stem cell properties and cytotoxic immune cells are depleted. Our multi-omic atlas provides insights into malignant progression of colorectal polyps and their microenvironment, serving as a framework for precision surveillance and prevention of CRC.


Asunto(s)
Pólipos del Colon/patología , Neoplasias Colorrectales/patología , Microambiente Tumoral , Inmunidad Adaptativa , Adenoma/genética , Adenoma/patología , Adulto , Anciano , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Muerte Celular , Diferenciación Celular , Pólipos del Colon/genética , Pólipos del Colon/inmunología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Heterogeneidad Genética , Humanos , Masculino , Ratones , Persona de Mediana Edad , Mutación/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , RNA-Seq , Reproducibilidad de los Resultados , Análisis de la Célula Individual , Microambiente Tumoral/inmunología
2.
Cell ; 164(4): 668-80, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26871632

RESUMEN

Mouse embryonic stem cells (ESCs) are maintained in a naive ground state of pluripotency in the presence of MEK and GSK3 inhibitors. Here, we show that ground-state ESCs express low Myc levels. Deletion of both c-myc and N-myc (dKO) or pharmacological inhibition of Myc activity strongly decreases transcription, splicing, and protein synthesis, leading to proliferation arrest. This process is reversible and occurs without affecting pluripotency, suggesting that Myc-depleted stem cells enter a state of dormancy similar to embryonic diapause. Indeed, c-Myc is depleted in diapaused blastocysts, and the differential expression signatures of dKO ESCs and diapaused epiblasts are remarkably similar. Following Myc inhibition, pre-implantation blastocysts enter biosynthetic dormancy but can progress through their normal developmental program after transfer into pseudo-pregnant recipients. Our study shows that Myc controls the biosynthetic machinery of stem cells without affecting their potency, thus regulating their entry and exit from the dormant state.


Asunto(s)
Células Madre Embrionarias/citología , Genes myc , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Blastocisto/metabolismo , Proliferación Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Técnicas de Inactivación de Genes , Masculino , Ratones , Ratones Endogámicos C57BL
3.
Genes Dev ; 36(5-6): 348-367, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35241478

RESUMEN

Cell fate transitions depend on balanced rewiring of transcription and translation programs to mediate ordered developmental progression. Components of the nonsense-mediated mRNA decay (NMD) pathway have been implicated in regulating embryonic stem cell (ESC) differentiation, but the exact mechanism is unclear. Here we show that NMD controls expression levels of the translation initiation factor Eif4a2 and its premature termination codon-encoding isoform (Eif4a2PTC ). NMD deficiency leads to translation of the truncated eIF4A2PTC protein. eIF4A2PTC elicits increased mTORC1 activity and translation rates and causes differentiation delays. This establishes a previously unknown feedback loop between NMD and translation initiation. Furthermore, our results show a clear hierarchy in the severity of target deregulation and differentiation phenotypes between NMD effector KOs (Smg5 KO > Smg6 KO > Smg7 KO), which highlights heterodimer-independent functions for SMG5 and SMG7. Together, our findings expose an intricate link between mRNA homeostasis and mTORC1 activity that must be maintained for normal dynamics of cell state transitions.


Asunto(s)
Proteínas Portadoras , Degradación de ARNm Mediada por Codón sin Sentido , Proteínas Portadoras/genética , Expresión Génica , Células HeLa , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
4.
Cell ; 158(6): 1254-1269, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25215486

RESUMEN

Current human pluripotent stem cells lack the transcription factor circuitry that governs the ground state of mouse embryonic stem cells (ESC). Here, we report that short-term expression of two components, NANOG and KLF2, is sufficient to ignite other elements of the network and reset the human pluripotent state. Inhibition of ERK and protein kinase C sustains a transgene-independent rewired state. Reset cells self-renew continuously without ERK signaling, are phenotypically stable, and are karyotypically intact. They differentiate in vitro and form teratomas in vivo. Metabolism is reprogrammed with activation of mitochondrial respiration as in ESC. DNA methylation is dramatically reduced and transcriptome state is globally realigned across multiple cell lines. Depletion of ground-state transcription factors, TFCP2L1 or KLF4, has marginal impact on conventional human pluripotent stem cells but collapses the reset state. These findings demonstrate feasibility of installing and propagating functional control circuitry for ground-state pluripotency in human cells.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Técnicas Citológicas , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Humanos , Factor 4 Similar a Kruppel , Ratones , Mitocondrias/metabolismo , Proteína Homeótica Nanog , Células Madre Pluripotentes/citología , Factores de Transcripción/metabolismo , Transcriptoma
5.
Nature ; 623(7986): 432-441, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914932

RESUMEN

Chromatin accessibility is essential in regulating gene expression and cellular identity, and alterations in accessibility have been implicated in driving cancer initiation, progression and metastasis1-4. Although the genetic contributions to oncogenic transitions have been investigated, epigenetic drivers remain less understood. Here we constructed a pan-cancer epigenetic and transcriptomic atlas using single-nucleus chromatin accessibility data (using single-nucleus assay for transposase-accessible chromatin) from 225 samples and matched single-cell or single-nucleus RNA-sequencing expression data from 206 samples. With over 1 million cells from each platform analysed through the enrichment of accessible chromatin regions, transcription factor motifs and regulons, we identified epigenetic drivers associated with cancer transitions. Some epigenetic drivers appeared in multiple cancers (for example, regulatory regions of ABCC1 and VEGFA; GATA6 and FOX-family motifs), whereas others were cancer specific (for example, regulatory regions of FGF19, ASAP2 and EN1, and the PBX3 motif). Among epigenetically altered pathways, TP53, hypoxia and TNF signalling were linked to cancer initiation, whereas oestrogen response, epithelial-mesenchymal transition and apical junction were tied to metastatic transition. Furthermore, we revealed a marked correlation between enhancer accessibility and gene expression and uncovered cooperation between epigenetic and genetic drivers. This atlas provides a foundation for further investigation of epigenetic dynamics in cancer transitions.


Asunto(s)
Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Neoplasias , Humanos , Hipoxia de la Célula , Núcleo Celular , Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos/genética , Epigénesis Genética/genética , Transición Epitelial-Mesenquimal , Estrógenos/metabolismo , Perfilación de la Expresión Génica , Proteínas Activadoras de GTPasa/metabolismo , Metástasis de la Neoplasia , Neoplasias/clasificación , Neoplasias/genética , Neoplasias/patología , Secuencias Reguladoras de Ácidos Nucleicos/genética , Análisis de la Célula Individual , Factores de Transcripción/metabolismo
6.
Cell ; 153(2): 335-47, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23582324

RESUMEN

Factors that sustain self-renewal of mouse embryonic stem cells (ESCs) are well described. In contrast, the machinery regulating exit from pluripotency is ill defined. In a large-scale small interfering RNA (siRNA) screen, we found that knockdown of the tumor suppressors Folliculin (Flcn) and Tsc2 prevent ESC commitment. Tsc2 lies upstream of mammalian target of rapamycin (mTOR), whereas Flcn acts downstream and in parallel. Flcn with its interaction partners Fnip1 and Fnip2 drives differentiation by restricting nuclear localization and activity of the bHLH transcription factor Tfe3. Conversely, enforced nuclear Tfe3 enables ESCs to withstand differentiation conditions. Genome-wide location and functional analyses showed that Tfe3 directly integrates into the pluripotency circuitry through transcriptional regulation of Esrrb. These findings identify a cell-intrinsic rheostat for destabilizing ground-state pluripotency to allow lineage commitment. Congruently, stage-specific subcellular relocalization of Tfe3 suggests that Flcn-Fnip1/2 contributes to developmental progression of the pluripotent epiblast in vivo.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Diferenciación Celular , Células Madre Embrionarias/citología , Redes Reguladoras de Genes , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Portadoras/metabolismo , Células Madre Embrionarias/metabolismo , Estrona/genética , Estrona/metabolismo , Ratones , Ratones Endogámicos C57BL , Serina-Treonina Quinasas TOR/metabolismo
7.
Annu Rev Cell Dev Biol ; 30: 647-75, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25288119

RESUMEN

Mouse embryonic stem (ES) cells perpetuate in vitro the broad developmental potential of naïve founder cells in the preimplantation embryo. ES cells self-renew relentlessly in culture but can reenter embryonic development seamlessly, differentiating on schedule to form all elements of the fetus. Here we review the properties of these remarkable cells. Arising from the stability, homogeneity, and equipotency of ES cells, we consider the concept of a pluripotent ground state. We evaluate the authenticity of ES cells in relation to cells in the embryo and examine their utility for dissecting mechanisms that confer pluripotency and that execute fate choice. We summarize current knowledge of the transcription factor circuitry that governs the ES cell state and discuss the opportunity to expose molecular logic further through iterative computational modeling and experimentation. Finally, we present a perspective on unresolved questions, including the challenge of deriving ground state pluripotent stem cells from non-rodent species.


Asunto(s)
Células Madre Embrionarias/citología , Animales , División Celular Asimétrica , Blastocisto/citología , Técnicas de Cultivo de Célula , Linaje de la Célula , Células Cultivadas , Reprogramación Celular , Técnicas de Cocultivo , Medios de Cultivo , Medio de Cultivo Libre de Suero , Células Madre de Carcinoma Embrionario/citología , Células Madre Embrionarias/fisiología , Fibroblastos/citología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Estratos Germinativos/citología , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Factor Inhibidor de Leucemia/fisiología , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Factores de Transcripción/farmacología , Factores de Transcripción/fisiología
8.
Development ; 151(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691188

RESUMEN

Analysis of single cell transcriptomics (scRNA-seq) data is typically performed after subsetting to highly variable genes (HVGs). Here, we show that Entropy Sorting provides an alternative mathematical framework for feature selection. On synthetic datasets, continuous Entropy Sort Feature Weighting (cESFW) outperforms HVG selection in distinguishing cell-state-specific genes. We apply cESFW to six merged scRNA-seq datasets spanning human early embryo development. Without smoothing or augmenting the raw counts matrices, cESFW generates a high-resolution embedding displaying coherent developmental progression from eight-cell to post-implantation stages and delineating 15 distinct cell states. The embedding highlights sequential lineage decisions during blastocyst development, while unsupervised clustering identifies branch point populations obscured in previous analyses. The first branching region, where morula cells become specified for inner cell mass or trophectoderm, includes cells previously asserted to lack a developmental trajectory. We quantify the relatedness of different pluripotent stem cell cultures to distinct embryo cell types and identify marker genes of naïve and primed pluripotency. Finally, by revealing genes with dynamic lineage-specific expression, we provide markers for staging progression from morula to blastocyst.


Asunto(s)
Linaje de la Célula , Embrión de Mamíferos , Desarrollo Embrionario , Entropía , Análisis de la Célula Individual , Transcriptoma , Humanos , Transcriptoma/genética , Análisis de la Célula Individual/métodos , Desarrollo Embrionario/genética , Embrión de Mamíferos/metabolismo , Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica , Blastocisto/metabolismo , Blastocisto/citología , Perfilación de la Expresión Génica , Mórula/metabolismo , Mórula/citología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología
9.
Development ; 151(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39069943

RESUMEN

Naïve epiblast cells in the embryo and pluripotent stem cells in vitro undergo developmental progression to a formative state competent for lineage specification. During this transition, transcription factors and chromatin are rewired to encode new functional features. Here, we examine the role of mitogen-activated protein kinase (ERK1/2) signalling in pluripotent state transition. We show that a primary consequence of ERK activation in mouse embryonic stem cells is elimination of Nanog, which precipitates breakdown of the naïve state gene regulatory network. Variability in pERK dynamics results in heterogeneous loss of Nanog and metachronous state transition. Knockdown of Nanog allows exit without ERK activation. However, transition to formative pluripotency does not proceed and cells collapse to an indeterminate identity. This outcome is due to failure to maintain expression of the central pluripotency factor Oct4. Thus, during formative transition ERK signalling both dismantles the naïve state and preserves pluripotency. These results illustrate how a single signalling pathway can both initiate and secure transition between cell states.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros , Células Madre Pluripotentes , Animales , Proteína Homeótica Nanog/metabolismo , Proteína Homeótica Nanog/genética , Ratones , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Diferenciación Celular/genética , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/metabolismo , Estratos Germinativos/citología , Redes Reguladoras de Genes , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética
10.
Cell ; 149(3): 590-604, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22541430

RESUMEN

Mouse embryonic stem (ES) cells grown in serum exhibit greater heterogeneity in morphology and expression of pluripotency factors than ES cells cultured in defined medium with inhibitors of two kinases (Mek and GSK3), a condition known as "2i" postulated to establish a naive ground state. We show that the transcriptome and epigenome profiles of serum- and 2i-grown ES cells are distinct. 2i-treated cells exhibit lower expression of lineage-affiliated genes, reduced prevalence at promoters of the repressive histone modification H3K27me3, and fewer bivalent domains, which are thought to mark genes poised for either up- or downregulation. Nonetheless, serum- and 2i-grown ES cells have similar differentiation potential. Precocious transcription of developmental genes in 2i is restrained by RNA polymerase II promoter-proximal pausing. These findings suggest that transcriptional potentiation and a permissive chromatin context characterize the ground state and that exit from it may not require a metastable intermediate or multilineage priming.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Código de Histonas , Transcripción Genética , Animales , Diferenciación Celular , Epigénesis Genética , Genes myc , Histonas/metabolismo , Metilación , Ratones , ARN Polimerasa II/metabolismo , Transcriptoma
11.
Development ; 150(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36930528

RESUMEN

The Company of Biologists' 2022 workshop on 'Cell State Transitions: Approaches, Experimental Systems and Models' brought together an international and interdisciplinary team of investigators spanning the fields of cell and developmental biology, stem cell biology, physics, mathematics and engineering to tackle the question of how cells precisely navigate between distinct identities and do so in a dynamic manner. This second edition of the workshop was organized after a successful virtual workshop on the same topic that took place in 2021.


Asunto(s)
Células Madre , Congresos como Asunto , Biología Celular , Biología Evolutiva
12.
EMBO J ; 40(8): e105776, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33687089

RESUMEN

In the mammalian embryo, epiblast cells must exit the naïve state and acquire formative pluripotency. This cell state transition is recapitulated by mouse embryonic stem cells (ESCs), which undergo pluripotency progression in defined conditions in vitro. However, our understanding of the molecular cascades and gene networks involved in the exit from naïve pluripotency remains fragmentary. Here, we employed a combination of genetic screens in haploid ESCs, CRISPR/Cas9 gene disruption, large-scale transcriptomics and computational systems biology to delineate the regulatory circuits governing naïve state exit. Transcriptome profiles for 73 ESC lines deficient for regulators of the exit from naïve pluripotency predominantly manifest delays on the trajectory from naïve to formative epiblast. We find that gene networks operative in ESCs are also active during transition from pre- to post-implantation epiblast in utero. We identified 496 naïve state-associated genes tightly connected to the in vivo epiblast state transition and largely conserved in primate embryos. Integrated analysis of mutant transcriptomes revealed funnelling of multiple gene activities into discrete regulatory modules. Finally, we delineate how intersections with signalling pathways direct this pivotal mammalian cell state transition.


Asunto(s)
Diferenciación Celular , Redes Reguladoras de Genes , Células Madre Embrionarias de Ratones/metabolismo , Animales , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Ratones , Células Madre Embrionarias de Ratones/citología , Transcriptoma
13.
Development ; 149(24)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36398796

RESUMEN

Propagation of human naïve pluripotent stem cells (nPSCs) relies on the inhibition of MEK/ERK signalling. However, MEK/ERK inhibition also promotes differentiation into trophectoderm (TE). Therefore, robust self-renewal requires suppression of TE fate. Tankyrase inhibition using XAV939 has been shown to stabilise human nPSCs and is implicated in TE suppression. Here, we dissect the mechanism of this effect. Tankyrase inhibition is known to block canonical Wnt/ß-catenin signalling. However, we show that nPSCs depleted of ß-catenin remain dependent on XAV939. Rather than inhibiting Wnt, we found that XAV939 prevents TE induction by reducing activation of YAP, a co-factor of TE-inducing TEAD transcription factors. Tankyrase inhibition stabilises angiomotin, which limits nuclear accumulation of YAP. Upon deletion of angiomotin-family members AMOT and AMOTL2, nuclear YAP increases and XAV939 fails to prevent TE induction. Expression of constitutively active YAP similarly precipitates TE differentiation. Conversely, nPSCs lacking YAP1 or its paralog TAZ (WWTR1) resist TE differentiation and self-renewal efficiently without XAV939. These findings explain the distinct requirement for tankyrase inhibition in human but not in mouse nPSCs and highlight the pivotal role of YAP activity in human naïve pluripotency and TE differentiation. This article has an associated 'The people behind the papers' interview.


Asunto(s)
Angiomotinas , Células Madre Pluripotentes , Tanquirasas , Proteínas Señalizadoras YAP , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , beta Catenina/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Tanquirasas/metabolismo , Vía de Señalización Wnt , Células Madre Pluripotentes/citología
15.
Mol Cell ; 65(6): 975-984.e5, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28306513

RESUMEN

Tardigrades are microscopic animals that survive a remarkable array of stresses, including desiccation. How tardigrades survive desiccation has remained a mystery for more than 250 years. Trehalose, a disaccharide essential for several organisms to survive drying, is detected at low levels or not at all in some tardigrade species, indicating that tardigrades possess potentially novel mechanisms for surviving desiccation. Here we show that tardigrade-specific intrinsically disordered proteins (TDPs) are essential for desiccation tolerance. TDP genes are constitutively expressed at high levels or induced during desiccation in multiple tardigrade species. TDPs are required for tardigrade desiccation tolerance, and these genes are sufficient to increase desiccation tolerance when expressed in heterologous systems. TDPs form non-crystalline amorphous solids (vitrify) upon desiccation, and this vitrified state mirrors their protective capabilities. Our study identifies TDPs as functional mediators of tardigrade desiccation tolerance, expanding our knowledge of the roles and diversity of disordered proteins involved in stress tolerance.


Asunto(s)
Aclimatación , Deshidratación/enzimología , Enzimas/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Tardigrada/enzimología , Animales , Deshidratación/genética , Desecación , Estabilidad de Enzimas , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Conformación Proteica , Interferencia de ARN , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Tardigrada/genética , Regulación hacia Arriba , Vitrificación
16.
EMBO J ; 39(2): e102591, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31782544

RESUMEN

Developmental cell fate specification is a unidirectional process that can be reverted in response to injury or experimental reprogramming. Whether differentiation and de-differentiation trajectories intersect mechanistically is unclear. Here, we performed comparative screening in lineage-related mouse naïve embryonic stem cells (ESCs) and primed epiblast stem cells (EpiSCs), and identified the constitutively expressed zinc finger transcription factor (TF) Zfp281 as a bidirectional regulator of cell state interconversion. We showed that subtle chromatin binding changes in differentiated cells translate into activation of the histone H3 lysine 9 (H3K9) methyltransferase Ehmt1 and stabilization of the zinc finger TF Zic2 at enhancers and promoters. Genetic gain-of-function and loss-of-function experiments confirmed a critical role of Ehmt1 and Zic2 downstream of Zfp281 both in driving exit from the ESC state and in restricting reprogramming of EpiSCs. Our study reveals that cell type-invariant chromatin association of Zfp281 provides an interaction platform for remodeling the cis-regulatory network underlying cellular plasticity.


Asunto(s)
Diferenciación Celular , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Células Madre Embrionarias de Ratones/citología , Células Madre Pluripotentes/citología , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Cromatina/química , Cromatina/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/metabolismo
17.
Development ; 148(20)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34932803

RESUMEN

A fundamental challenge when studying biological systems is the description of cell state dynamics. During transitions between cell states, a multitude of parameters may change - from the promoters that are active, to the RNAs and proteins that are expressed and modified. Cells can also adopt different shapes, alter their motility and change their reliance on cell-cell junctions or adhesion. These parameters are integral to how a cell behaves and collectively define the state a cell is in. Yet, technical challenges prevent us from measuring all of these parameters simultaneously and dynamically. How, then, can we comprehend cell state transitions using finite descriptions? The recent virtual workshop organised by The Company of Biologists entitled 'Cell State Transitions: Approaches, Experimental Systems and Models' attempted to address this question. Here, we summarise some of the main points that emerged during the workshop's themed discussions. We also present examples of cell state transitions and describe models and systems that are pushing forward our understanding of how cells rewire their state.


Asunto(s)
Linaje de la Célula/genética , Regiones Promotoras Genéticas/genética , Proteínas/genética , ARN/genética , Adhesión Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Uniones Intercelulares/genética , Biología de Sistemas
18.
Development ; 148(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34874452

RESUMEN

Despite four decades of effort, robust propagation of pluripotent stem cells from livestock animals remains challenging. The requirements for self-renewal are unclear and the relationship of cultured stem cells to pluripotent cells resident in the embryo uncertain. Here, we avoided using feeder cells or serum factors to provide a defined culture microenvironment. We show that the combination of activin A, fibroblast growth factor and the Wnt inhibitor XAV939 (AFX) supports establishment and continuous expansion of pluripotent stem cell lines from porcine, ovine and bovine embryos. Germ layer differentiation was evident in teratomas and readily induced in vitro. Global transcriptome analyses highlighted commonality in transcription factor expression across the three species, while global comparison with porcine embryo stages showed proximity to bilaminar disc epiblast. Clonal genetic manipulation and gene targeting were exemplified in porcine stem cells. We further demonstrated that genetically modified AFX stem cells gave rise to cloned porcine foetuses by nuclear transfer. In summary, for major livestock mammals, pluripotent stem cells related to the formative embryonic disc are reliably established using a common and defined signalling environment. This article has an associated 'The people behind the papers' interview.


Asunto(s)
Diferenciación Celular , Embrión de Mamíferos/metabolismo , Estratos Germinativos/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Bovinos , Embrión de Mamíferos/citología , Estratos Germinativos/citología , Ganado , Células Madre Pluripotentes/citología , Ovinos , Especificidad de la Especie , Porcinos
19.
Cell ; 138(4): 722-37, 2009 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-19703398

RESUMEN

Pluripotency is generated naturally during mammalian development through formation of the epiblast, founder tissue of the embryo proper. Pluripotency can be recreated by somatic cell reprogramming. Here we present evidence that the homeodomain protein Nanog mediates acquisition of both embryonic and induced pluripotency. Production of pluripotent hybrids by cell fusion is promoted by and dependent on Nanog. In transcription factor-induced molecular reprogramming, Nanog is initially dispensable but becomes essential for dedifferentiated intermediates to transit to ground state pluripotency. In the embryo, Nanog specifically demarcates the nascent epiblast, coincident with the domain of X chromosome reprogramming. Without Nanog, pluripotency does not develop, and the inner cell mass is trapped in a pre-pluripotent, indeterminate state that is ultimately nonviable. These findings suggest that Nanog choreographs synthesis of the naive epiblast ground state in the embryo and that this function is recapitulated in the culmination of somatic cell reprogramming.


Asunto(s)
Reprogramación Celular , Proteínas de Homeodominio/metabolismo , Células Madre Adultas/citología , Animales , Blastocisto/citología , Desdiferenciación Celular , Células Madre Embrionarias/citología , Femenino , Estratos Germinativos/citología , Proteínas de Homeodominio/genética , Ratones , Proteína Homeótica Nanog , Cromosoma X/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-39097488

RESUMEN

Galactose-alpha-1,3-galactose (alpha-gal) is a carbohydrate expressed by all mammals except for humans and certain old-world primates. It can be found in a plethora of products derived from mammals, including milk, organs, skeletal muscle and gelatin, in addition to products prepared with mammalian cells or constituents. In the late 2000s, an association between tick bites and the development of immunoglobulin E antibodies to the alpha-gal carbohydrate was discovered. The term "alpha-gal syndrome" (AGS) was then coined to describe allergic reactions to mammalian meat or other alpha-gal-containing products derived from mammals. Symptoms are often delayed several hours from consumption and can be urticarial and/or gastrointestinal. Medications and bioprosthetic inserts derived from mammals were also noted to cause allergic reactions in affected patients. Cardiac surgery, in particular, is considered high risk, given that unfractionated heparin has a bovine or porcine origin and is administered in large doses for cardiopulmonary bypass. Bioprosthetic valves have similar origins and risks. Awareness of AGS in cardiac surgery patients can lead to decreased risk preoperatively and inform management perioperatively and postoperatively. In this narrative review, we have reviewed the published literature relevant to AGS in patients undergoing cardiac surgery and shared our treatment approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA