Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Hum Mol Genet ; 26(18): 3545-3552, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28911200

RESUMEN

Eukaryotic elongation factor 1A (EEF1A), is encoded by two distinct isoforms, EEF1A1 and EEF1A2; whereas EEF1A1 is expressed almost ubiquitously, EEF1A2 expression is limited such that it is only detectable in skeletal muscle, heart, brain and spinal cord. Currently, the role of EEF1A2 in normal cardiac development and function is unclear. There have been several reports linking de novo dominant EEF1A2 mutations to neurological issues in humans. We report a pair of siblings carrying a homozygous missense mutation p.P333L in EEF1A2 who exhibited global developmental delay, failure to thrive, dilated cardiomyopathy and epilepsy, ultimately leading to death in early childhood. A third sibling also died of a similar presentation, but DNA was unavailable to confirm the mutation. Functional genomic analysis was performed in S. cerevisiae and zebrafish. In S. cerevisiae, there was no evidence for a dominant-negative effect. Previously identified putative de novo mutations failed to complement yeast strains lacking the EEF1A ortholog showing a major growth defect. In contrast, the introduction of the mutation seen in our family led to a milder growth defect. To evaluate its function in zebrafish, we knocked down eef1a2 expression using translation blocking and splice-site interfering morpholinos. EEF1A2-deficient zebrafish had skeletal muscle weakness, cardiac failure and small heads. Human EEF1A2 wild-type mRNA successfully rescued the morphant phenotype, but mutant RNA did not. Overall, EEF1A2 appears to be critical for normal heart function in humans, and its deficiency results in clinical abnormalities in neurologic function as well as in skeletal and cardiac muscle defects.


Asunto(s)
Cardiomiopatía Dilatada/genética , Factor 1 de Elongación Peptídica/genética , Animales , Cardiomiopatía Dilatada/metabolismo , Discapacidades del Desarrollo/genética , Epilepsia/genética , Insuficiencia de Crecimiento/genética , Genómica , Homocigoto , Humanos , Modelos Animales , Mutación , Mutación Missense/genética , Factor 1 de Elongación Peptídica/metabolismo , Isoformas de Proteínas/genética , Saccharomyces cerevisiae/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
2.
Hum Mol Genet ; 23(13): 3566-78, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24549043

RESUMEN

Autosomal recessive centronuclear myopathy (CNM2), caused by mutations in bridging integrator 1 (BIN1), is a mildly progressive neuromuscular disorder characterized by abnormally centralized myonuclei and muscle weakness. BIN1 is important for membrane sensing and remodeling in vitro in different cell types. However, to fully understand the biological roles of BIN1 in vivo and to answer critical questions concerning the muscle-specific function of BIN1 in vertebrates, robust small animal models are required. In this study, we create and characterize a novel zebrafish model of CNM2 using antisense morpholinos. Immunofluorescence and histopathological analyses of Bin1-deficient zebrafish skeletal muscle reveal structural defects commonly reported in human CNM2 biopsies. Live imaging of zebrafish embryos shows defective calcium release in bin1 morphants, linking the presence of abnormal triads to impairments in intracellular signaling. RNA-mediated rescue assays demonstrate that knockdown of zebrafish bin1 can reliably examine the pathogenicity of novel BIN1 mutations in vivo. Finally, our results strongly suggest that the phosphoinositide-binding domain of BIN1, present only in skeletal muscle isoforms, may be more critical for muscle maturation and maintenance than for early muscle development. Overall, our data support that BIN1 plays an important role in membrane tubulation and may promote skeletal muscle weakness in CNM2 by disrupting machinery necessary for excitation-contraction coupling in vertebrate organisms. The reproducible phenotype of Bin1-deficient zebrafish, together with the generalized advantages of the teleost system, makes this model readily adaptable to high-throughput screening strategies and may be used to identify therapies for CNM2 and related neuromuscular diseases.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Drosophila/genética , Miopatías Estructurales Congénitas/metabolismo , Factores de Transcripción/genética , Proteínas de Pez Cebra/metabolismo , Animales , Proteínas de Drosophila/deficiencia , Músculo Esquelético/metabolismo , Miopatías Estructurales Congénitas/genética , Fosfatidilinositoles/metabolismo , Factores de Transcripción/deficiencia , Pez Cebra , Proteínas de Pez Cebra/genética
3.
Hum Mol Genet ; 23(24): 6584-93, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25055871

RESUMEN

Lethal congenital contracture syndrome (LCCS) is a lethal autosomal recessive form of arthrogryposis multiplex congenita (AMC). LCCS is genetically heterogeneous with mutations in five genes identified to date, all with a role in the innervation or contractile apparatus of skeletal muscles. In a consanguineous Saudi family with multiple stillbirths presenting with LCCS, we excluded linkage to all known LCCS loci and combined autozygome analysis and whole-exome sequencing to identify a novel homozygous variant in ZBTB42, which had been shown to be enriched in skeletal muscles, especially at the neuromuscular junction. Knockdown experiments of zbtb42 in zebrafish consistently resulted in grossly abnormal skeletal muscle development and myofibrillar disorganization at the microscopic level. This severe muscular phenotype is successfully rescued with overexpression of the human wild-type ZBTB42 gene, but not with the mutant form of ZBTB42 that models the human missense change. Our data assign a novel muscular developmental phenotype to ZBTB42 in vertebrates and establish a new LCCS6 type caused by ZBTB42 mutation.


Asunto(s)
Artrogriposis/genética , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Mutación Missense , Unión Neuromuscular/metabolismo , Proteínas Nucleares/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Artrogriposis/metabolismo , Artrogriposis/patología , Consanguinidad , Exoma , Femenino , Técnicas de Silenciamiento del Gen , Prueba de Complementación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Recién Nacido , Masculino , Datos de Secuencia Molecular , Músculo Esquelético/inervación , Músculo Esquelético/patología , Unión Neuromuscular/patología , Linaje , Arabia Saudita , Mortinato , Pez Cebra
4.
Hum Genet ; 135(1): 21-30, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26541337

RESUMEN

Myopathies are heterogeneous disorders characterized clinically by weakness and hypotonia, usually in the absence of gross dystrophic changes. Mitochondrial dysfunction is a frequent cause of myopathy. We report a simplex case born to consanguineous parents who presented with muscle weakness, lactic acidosis, and muscle changes suggestive of mitochondrial dysfunction. Combined autozygome and exome analysis revealed a missense variant in the SLC25A42 gene, which encodes an inner mitochondrial membrane protein that imports coenzyme A into the mitochondrial matrix. Zebrafish slc25a42 knockdown morphants display severe muscle disorganization and weakness. Importantly, these features are rescued by normal human SLC25A42 RNA, but not by RNA harboring the patient's variant. Our data support a potentially causal link between SLC25A42 mutation and mitochondrial myopathy in humans.


Asunto(s)
Translocador 1 del Nucleótido Adenina/genética , Miopatías Mitocondriales/genética , Mutación , Adolescente , Animales , Femenino , Humanos , Masculino , Modelos Animales , Linaje , ARN Mensajero/genética , Pez Cebra
5.
PLoS Genet ; 9(6): e1003583, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23818870

RESUMEN

X-linked myotubular myopathy (XLMTM) is a congenital disorder caused by mutations of the myotubularin gene, MTM1. Myotubularin belongs to a large family of conserved lipid phosphatases that include both catalytically active and inactive myotubularin-related proteins (i.e., "MTMRs"). Biochemically, catalytically inactive MTMRs have been shown to form heteroligomers with active members within the myotubularin family through protein-protein interactions. However, the pathophysiological significance of catalytically inactive MTMRs remains unknown in muscle. By in vitro as well as in vivo studies, we have identified that catalytically inactive myotubularin-related protein 12 (MTMR12) binds to myotubularin in skeletal muscle. Knockdown of the mtmr12 gene in zebrafish resulted in skeletal muscle defects and impaired motor function. Analysis of mtmr12 morphant fish showed pathological changes with central nucleation, disorganized Triads, myofiber hypotrophy and whorled membrane structures similar to those seen in X-linked myotubular myopathy. Biochemical studies showed that deficiency of MTMR12 results in reduced levels of myotubularin protein in zebrafish and mammalian C2C12 cells. Loss of myotubularin also resulted in reduction of MTMR12 protein in C2C12 cells, mice and humans. Moreover, XLMTM mutations within the myotubularin interaction domain disrupted binding to MTMR12 in cell culture. Analysis of human XLMTM patient myotubes showed that mutations that disrupt the interaction between myotubularin and MTMR12 proteins result in reduction of both myotubularin and MTMR12. These studies strongly support the concept that interactions between myotubularin and MTMR12 are required for the stability of their functional protein complex in normal skeletal muscles. This work highlights an important physiological function of catalytically inactive phosphatases in the pathophysiology of myotubular myopathy and suggests a novel therapeutic approach through identification of drugs that could stabilize the myotubularin-MTMR12 complex and hence ameliorate this disorder.


Asunto(s)
Miopatías Estructurales Congénitas/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas/genética , Pez Cebra/genética , Animales , Catálisis , Línea Celular , Humanos , Ratones , Músculo Esquelético , Músculos/metabolismo , Músculos/fisiopatología , Mutación , Miopatías Estructurales Congénitas/fisiopatología , Estabilidad Proteica , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas/química , Proteínas/metabolismo
6.
Nat Cell Biol ; 5(5): 474-9, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12717449

RESUMEN

Most somatic cells do not express sufficient amounts of telomerase to maintain a constant telomere length during cycles of chromosome replication. Consequently, there is a limit to the number of doublings somatic cells can undergo before telomere shortening triggers an irreversible state of cellular senescence. Ectopic expression of telomerase overcomes this limitation, and in conjunction with specific oncogenes can transform cells to a tumorigenic phenotype. However, recent studies have questioned whether the stabilization of chromosome ends entirely explains the ability of telomerase to promote tumorigenesis and have resulted in the hypothesis that telomerase has a second function that also supports cell division. Here we show that ectopic expression of telomerase in human mammary epithelial cells (HMECs) results in a diminished requirement for exogenous mitogens and that this correlates with telomerase-dependent induction of genes that promote cell growth. Furthermore, we show that inhibiting expression of one of these genes, the epidermal growth factor receptor (EGFR), reverses the enhanced proliferation caused by telomerase. We conclude that telomerase may affect proliferation of epithelial cells not only by stabilizing telomeres, but also by affecting the expression of growth-promoting genes.


Asunto(s)
Mama/enzimología , División Celular/genética , Transformación Celular Neoplásica/metabolismo , Células Epiteliales/enzimología , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias/enzimología , Telomerasa/metabolismo , División Celular/efectos de los fármacos , Transformación Celular Neoplásica/genética , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Replicación del ADN/efectos de los fármacos , Replicación del ADN/genética , Células Epiteliales/efectos de los fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Sustancias de Crecimiento/biosíntesis , Sustancias de Crecimiento/genética , Humanos , Mitógenos/farmacología , Datos de Secuencia Molecular , Neoplasias/genética , ARN/análisis , ARN/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Telomerasa/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
7.
Mol Cell Biol ; 24(20): 8813-22, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15456857

RESUMEN

Although previous studies demonstrate that appropriate Notch signaling is required during angiogenesis and in vascular homeostasis, the mechanisms by which Notch regulates vascular function remain to be elucidated. Here, we show that activation of the Notch pathway by the ligand Jagged1 reduces the proliferation of endothelial cells. Notch activation inhibits proliferation of endothelial cells in a cell-autonomous manner by inhibiting phosphorylation of the retinoblastoma protein (Rb). During cell cycle entry, p21Cip1 is upregulated in endothelial cells. Activated Notch inhibits mitogen-induced upregulation of p21Cip1 and delays cyclin D-cdk4-mediated Rb phosphorylation. Notch-dependent repression of p21Cip1 prevents nuclear localization of cyclin D and cdk4. The necessity of p21Cip1 for nuclear translocation of cyclin D-cdk4 and S-phase entry in endothelial cells was demonstrated by targeted downregulation of p21Cip1 by using RNA interference. We further demonstrate that when endothelial cells reach confluence, Notch is activated and p21Cip1 is downregulated. Inhibition of the Notch pathway at confluence prevents p21Cip1 downregulation and induces Rb phosphorylation. We suggest that Notch activation contributes to contact inhibition of endothelial cells, in part through repression of p21Cip1 expression.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Inhibición de Contacto/fisiología , Células Endoteliales/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Animales , Proteínas de Unión al Calcio , Proteínas de Ciclo Celular/genética , Línea Celular , Proliferación Celular , Ciclina D , Quinasa 4 Dependiente de la Ciclina , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Células Endoteliales/citología , Endotelio Vascular/citología , Humanos , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular , Proteína Jagged-1 , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosforilación , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogénicas/genética , Interferencia de ARN , Receptor Notch1 , Receptor Notch4 , Receptores de Superficie Celular/genética , Receptores Notch , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína de Retinoblastoma/metabolismo , Proteínas Serrate-Jagged , Factores de Transcripción/genética
8.
J Vis Exp ; (82): e50925, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24378748

RESUMEN

Zebrafish (Danio rerio) have become a particularly effective tool for modeling human diseases affecting skeletal muscle, including muscular dystrophies, congenital myopathies, and disruptions in sarcomeric assembly, due to high genomic and structural conservation with mammals. Muscular disorganization and locomotive impairment can be quickly assessed in the zebrafish over the first few days post-fertilization. Two assays to help characterize skeletal muscle defects in zebrafish are birefringence (structural) and touch-evoked escape response (behavioral). Birefringence is a physical property in which light is rotated as it passes through ordered matter, such as the pseudo-crystalline array of muscle sarcomeres. It is a simple, noninvasive approach to assess muscle integrity in translucent zebrafish larvae early in development. Wild-type zebrafish with highly organized skeletal muscle appear very bright amidst a dark background when visualized between two polarized light filters, whereas muscle mutants have birefringence patterns specific to the primary muscular disorder they model. Zebrafish modeling muscular dystrophies, diseases characterized by myofiber degeneration followed by repeated rounds of regeneration, exhibit degenerative dark patches in skeletal muscle under polarized light. Nondystrophic myopathies are not associated with necrosis or regenerative changes, but result in disorganized myofibers and skeletal muscle weakness. Myopathic zebrafish typically show an overall reduction in birefringence, reflecting the disorganization of sarcomeres. The touch-evoked escape assay involves observing an embryo's swimming behavior in response to tactile stimulation. In comparison to wild-type larvae, mutant larvae frequently display a weak escape contraction, followed by slow swimming or other type of impaired motion that fails to propel the larvae more than a short distance. The advantage of these assays is that disease progression in the same fish type can be monitored in vivo for several days, and that large numbers of fish can be analyzed in a short time relative to higher vertebrates.


Asunto(s)
Modelos Animales de Enfermedad , Reacción de Fuga/fisiología , Músculo Esquelético/anomalías , Músculo Esquelético/química , Distrofias Musculares/patología , Distrofias Musculares/fisiopatología , Natación/fisiología , Animales , Birrefringencia , Femenino , Larva , Masculino , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA