Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Microorganisms ; 11(1)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36677505

RESUMEN

Enterobacteriaceae represent one of the main families of Gram-negative bacilli responsible for serious urinary tract infections (UTIs). The present study aimed to define the resistance profile and the virulence of Enterobacteriaceae strains isolated in urinary tract infections in Benin. A total of 390 urine samples were collected from patients with UTIs, and Enterobacteriaceae strains were isolated according to standard microbiology methods. The API 20E gallery was used for biochemical identification. All the isolated strains were subjected to antimicrobial susceptibility testing using the disc diffusion method. Extended-spectrum beta-lactamase (ESBL) production was investigated using a double-disc synergy test (DDST), and biofilm production was quantified using the microplate method. Multiplex PCR was used to detect uro-virulence genes, namely: PapG, IronB, Sfa, iucD, Hly, FocG, Sat, FyuA and Cnf, using commercially designed primers. More than 26% (103/390) of our samples were contaminated by Enterobacteriaceae strains at different levels. Thus, E. coli (31.07%, 32/103), Serratia marcescens (11.65%, 12/103), Klebsiella ornithinolytica (8.74%, 9/103), Serratia fonticola (7.77%, 8/103) and Enterobacter cloacae (6.80%, 7/103) were identified. Among the isolated strains, 39.81% (41/103) were biofilm-forming, while 5.83% (6/103) were ESBL-producing. Isolates were most resistant to erythromycin, cefixime, ceftriaxone and ampicillin (≥90%) followed by ciprofloxacin, gentamycin, doxycycline and levofloxacin (≥50%), and least resistant to imipenem (27.18%). In regard to virulence genes, Sfa was the most detected (28.15%), followed by IronB (22.23%), iucD (21.36%), Cnf (15.53%), PapG (9.71%), FocG (8.74%), Sat (6.79%), FyuA (5.82%) and Hyl (2.91%). These data may help improve the diagnosis of uropathogenic strains of Enterobacteriaceae, but also in designing effective strategies and measures for the prevention and management of severe, recurrent, or complicated urinary tract infections in Benin.

2.
Biomed Res Int ; 2023: 6364128, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223336

RESUMEN

Staphylococci can cause urinary tract infections (UTIs). These UTIs are among the significant causes of antibiotic resistance and the spread of antibiotic-resistant diseases. The current study is aimed at establishing a resistance profile and determining the pathogenicity of Staphylococcus strains isolated from UTI samples collected in Benin. For this purpose, urine samples (one hundred and seventy) that were collected from clinics and hospitals showed UTI in patients admitted/visited in Benin. The biochemical assay method was used to identify Staphylococcus spp., and the disk diffusion method tested the antimicrobial susceptibility. The biofilm formation ability of the isolates of Staphylococcus spp. was investigated by the colorimetric method. The presence of mecA, edinB, edinC, cna, bbp, and ebp genes was examined by multiplex polymerase chain reaction (PCR). The results showed that Staphylococcus species were identified in 15.29% of all infected individuals and that 58% of these strains formed biofilms. Most Staphylococcus strains (80.76%) were isolated in female samples, and the age group below 30 years appeared to be the most affected, with a rate of 50%. All Staphylococcus strains isolated were 100% resistant to penicillin and oxacillin. The lowest resistance rates were seen with ciprofloxacin (30.8%), gentamicin, and amikacin (26.90%). Amikacin was the best antibiotic against Staphylococcus strains isolated from UTIs. The isolates carried mecA (42.31%), bbp (19.23%), and ebp (26.92%) genes in varying proportions. This study provides new information on the risks posed to the population by the overuse of antibiotics. In addition, it will play an essential role in restoring people's public health and controlling the spread of antibiotic resistance in urinary tract infections in Benin.


Asunto(s)
Amicacina , Infecciones Urinarias , Humanos , Femenino , Adulto , Benin/epidemiología , Staphylococcus/genética , Infecciones Urinarias/tratamiento farmacológico , Antibacterianos/farmacología , Farmacorresistencia Microbiana
3.
Saudi J Biol Sci ; 28(2): 1331-1335, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33613063

RESUMEN

Morinda citrifolia is a plant with broad nutraceutical and therapeutic effects and used in the traditional treatment of several ailments. The objective of this work is to investigate the phytochemistry of the fruit juice of M. citrifolia on one hand and on other hand to evaluate its antiradical and antibacterial activity. The phytochemical investigation was carried out by tube staining tests of the extract of two types of fruit juice of M. citrifolia. The antioxidant activity of these juices was evaluated by reducing the DPPH radical method. Concerning the antibacterial activity, it was tested on the in vitro growth of 10 reference bacterial strains using the well diffusion method. Qualitative phytochemistry of M. citrifolia fruit juices revealed the presence of large groups of secondary metabolites including polyphenols, reducing compounds, mucilage and terpernoids. The antioxidant activity of M. citrifolia fruit juices is dose-dependent and higher than that of ascorbic acid. Antimicrobial activity on other hand revealed that fruit juices inhibit growth inhibitory activity of Staphylococcus aureus, Pseudomonas aeruginosa, Proteus mirabilis, S. epidermidis, Proteus vulgaris, Streptococcus oralis, Enterococcus faecalis and Escherichia coli. This observed difference is significant for each juices on the strains (p < 0.001). These results support the use of M. citrifolia in traditional medicine and are the starting points for the development of a new drug to combat both dietary conditions and chronic conditions associated with oxidative stress.

4.
Biomed Res Int ; 2021: 6637617, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395621

RESUMEN

Staphylococcus aureus is a major human pathogen present on a third of the healthy population. The bacterium possesses an extensive arsenal of virulence factors. The pathogenicity is linked with S. aureus high plasticity and its exceptional ability to incorporate foreign genetic material. The aim of the present study was to perform molecular characterization of Staphylococcus aureus strains isolated from the clinical environment of the CHU-Z Abomey-Calavi/Sô-Ava. Isolation of Staphylococcus aureus bacterium was performed on Chapman agar. Toxin production by isolated S. aureus strains was investigated using the radial immunoprecipitation technique. A colorimetric assay was used to evaluate Staphylococcus aureus lipase (SA-Lipase) production. Finally, the expression of antibiotic resistance genes and genes encoding toxins production was investigated. Our data suggest that none of the isolated Staphylococcus aureus strains expressed the investigated toxin genes. Interestingly, SA-Lipase was produced by 14.28% of our isolated S. aureus strains. The mecA gene was present in 57.14% of the isolated strains, while PVL and TSST-1 genes were identified in 2.85 and 7.14% of S. aureus, respectively. Significant genetic diversity was observed along the hospital environment S. aureus strains. The present study reveals the level of virulence of S. aureus strains isolated in the different units of CHU-Z Abomey Calavi/Sô-Ava through the production of lipase, PVL, and epidermolysins. The molecular study has favored a genetic characterization within the isolated strains.


Asunto(s)
Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/aislamiento & purificación , Staphylococcus aureus/patogenicidad , Factores de Virulencia/genética , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Benin , Enterotoxinas/genética , Exotoxinas/genética , Hospitales Universitarios , Humanos , Leucocidinas/genética , Lipasa/genética , Proteínas de Unión a las Penicilinas/genética , ARN Bacteriano/genética , ARN Ribosómico/genética , ARN Ribosómico 16S/genética , Staphylococcus aureus/genética , Superantígenos/genética , Virulencia
5.
Int J Microbiol ; 2020: 6512106, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32908525

RESUMEN

Staphylococcus spp. is most often implicated in nosocomial infections. The objective of this study is to evaluate the susceptibility to antibiotics and the biofilm formation capacity of staphylococci species isolated from surfaces and medicotechnical materials at the university hospital center of Abomey-Calavi/Sô-Ava in Benin. Samples were collected according to ISO/DIS14698-1 standard from the surfaces and medicotechnical materials by the dry swab method. The isolation of Staphylococcus strains was performed on Chapman agar, and their identification was performed using microscopic and biochemical methods. The susceptibility of Staphylococcus isolates to antibiotics was evaluated by the disc diffusion method according to EUCAST and CLSI recommendations. The biofilm formation was qualitatively assessed using microplates. Of the 128 surfaces and medicotechnical material samples analyzed, 77% were contaminated with Staphylococcus spp. Thirteen species of Staphylococcus were isolated in different proportions but the pediatric department was the most contaminated (33%) by S. aureus. Resistance to antibiotics considerably varies according to the species of Staphylococcus. However, antibiotics such as chloramphenicol and vancomycin are the most effective on S. aureus, whereas coagulase-negative staphylococci developed less resistance to gentamycin and ciprofloxacin. The biofilm test reveals that 37% of our isolated strains were biofilm formers. Although regular monitoring of hospital hygiene is crucial, the optimal use of antibiotics is a cornerstone of reducing antimicrobial resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA