Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 521(7550): 74-76, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25901684

RESUMEN

The impact of neonicotinoid insecticides on insect pollinators is highly controversial. Sublethal concentrations alter the behaviour of social bees and reduce survival of entire colonies. However, critics argue that the reported negative effects only arise from neonicotinoid concentrations that are greater than those found in the nectar and pollen of pesticide-treated plants. Furthermore, it has been suggested that bees could choose to forage on other available flowers and hence avoid or dilute exposure. Here, using a two-choice feeding assay, we show that the honeybee, Apis mellifera, and the buff-tailed bumblebee, Bombus terrestris, do not avoid nectar-relevant concentrations of three of the most commonly used neonicotinoids, imidacloprid (IMD), thiamethoxam (TMX), and clothianidin (CLO), in food. Moreover, bees of both species prefer to eat more of sucrose solutions laced with IMD or TMX than sucrose alone. Stimulation with IMD, TMX and CLO neither elicited spiking responses from gustatory neurons in the bees' mouthparts, nor inhibited the responses of sucrose-sensitive neurons. Our data indicate that bees cannot taste neonicotinoids and are not repelled by them. Instead, bees preferred solutions containing IMD or TMX, even though the consumption of these pesticides caused them to eat less food overall. This work shows that bees cannot control their exposure to neonicotinoids in food and implies that treating flowering crops with IMD and TMX presents a sizeable hazard to foraging bees.


Asunto(s)
Abejas/fisiología , Dieta/veterinaria , Preferencias Alimentarias , Insecticidas/análisis , Néctar de las Plantas/química , Animales , Abejas/efectos de los fármacos , Células Quimiorreceptoras/efectos de los fármacos , Células Quimiorreceptoras/metabolismo , Femenino , Flores/química , Flores/efectos de los fármacos , Preferencias Alimentarias/efectos de los fármacos , Guanidinas/efectos adversos , Guanidinas/análisis , Guanidinas/farmacología , Imidazoles/efectos adversos , Imidazoles/análisis , Imidazoles/farmacología , Insecticidas/efectos adversos , Insecticidas/farmacología , Masculino , Neonicotinoides , Nitrocompuestos/efectos adversos , Nitrocompuestos/análisis , Nitrocompuestos/farmacología , Oxazinas/efectos adversos , Oxazinas/análisis , Oxazinas/farmacología , Polen/química , Polinización , Reproducción/efectos de los fármacos , Reproducción/fisiología , Análisis de Supervivencia , Gusto/fisiología , Tiametoxam , Tiazoles/efectos adversos , Tiazoles/análisis , Tiazoles/farmacología
3.
Sci Rep ; 5: 15322, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26477973

RESUMEN

Neonicotinoids are often applied as systemic seed treatments to crops and have reported negative impact on pollinators when they appear in floral nectar and pollen. Recently, we found that bees in a two-choice assay prefer to consume solutions containing field-relevant doses of the neonicotinoid pesticides, imidacloprid (IMD) and thiamethoxam (TMX), to sucrose alone. This suggests that neonicotinoids enhance the rewarding properties of sucrose and that low, acute doses could improve learning and memory in bees. To test this, we trained foraging-age honeybees to learn to associate floral scent with a reward containing nectar-relevant concentrations of IMD and TMX and tested their short (STM) and long-term (LTM) olfactory memories. Contrary to our predictions, we found that none of the solutions enhanced the rate of olfactory learning and some of them impaired it. In particular, the effect of 10 nM IMD was observed by the second conditioning trial and persisted 24 h later. In most other groups, exposure to IMD and TMX affected STM but not LTM. Our data show that negative impacts of low doses of IMD and TMX do not require long-term exposure and suggest that impacts of neonicotinoids on olfaction are greater than their effects on rewarding memories.


Asunto(s)
Anabasina/farmacología , Abejas/efectos de los fármacos , Abejas/fisiología , Conducta Alimentaria , Memoria a Corto Plazo/efectos de los fármacos , Percepción Olfatoria/efectos de los fármacos , Plaguicidas/farmacología , Animales , Aprendizaje/efectos de los fármacos , Recompensa
4.
PLoS One ; 10(8): e0133733, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26280999

RESUMEN

Sodium channels, found ubiquitously in animal muscle cells and neurons, are one of the main target sites of many naturally-occurring, insecticidal plant compounds and agricultural pesticides. Pyrethroids, derived from compounds found only in the Asteraceae, are particularly toxic to insects and have been successfully used as pesticides including on flowering crops that are visited by pollinators. Pyrethrins, from which they were derived, occur naturally in the nectar of some flowering plant species. We know relatively little about how such compounds--i.e., compounds that target sodium channels--influence pollinators at low or sub-lethal doses. Here, we exposed individual adult forager honeybees to several compounds that bind to sodium channels to identify whether these compounds affect motor function. Using an assay previously developed to identify the effect of drugs and toxins on individual bees, we investigated how acute exposure to 10 ng doses (1 ppm) of the pyrethroid insecticides (cyfluthrin, tau-fluvalinate, allethrin and permethrin) and the nectar toxins (aconitine and grayanotoxin I) affected honeybee locomotion, grooming and wing fanning behaviour. Bees exposed to these compounds spent more time upside down and fanning their wings. They also had longer bouts of standing still. Bees exposed to the nectar toxin, aconitine, and the pyrethroid, allethrin, also spent less time grooming their antennae. We also found that the concentration of the nectar toxin, grayanotoxin I (GTX), fed to bees affected the time spent upside down (i.e., failure to perform the righting reflex). Our data show that low doses of pyrethroids and other nectar toxins that target sodium channels mainly influence motor function through their effect on the righting reflex of adult worker honeybees.


Asunto(s)
Aseo Animal/efectos de los fármacos , Locomoción/efectos de los fármacos , Néctar de las Plantas/toxicidad , Piretrinas/toxicidad , Aconitina/toxicidad , Animales , Abejas , Conducta Animal/efectos de los fármacos , Diterpenos/toxicidad , Insecticidas/toxicidad , Nitrilos/toxicidad , Permetrina/toxicidad , Alas de Animales/efectos de los fármacos , Alas de Animales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA