Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
1.
Annu Rev Biochem ; 88: 307-335, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31220979

RESUMEN

The stage at which ribosomes are recruited to messenger RNAs (mRNAs) is an elaborate and highly regulated phase of protein synthesis. Upon completion of this step, a ribosome is positioned at an appropriate initiation codon and primed to synthesize the encoded polypeptide product. In most circumstances, this step commits the ribosome to translate the mRNA. We summarize the knowledge regarding the initiation factors implicated in this activity as well as review different mechanisms by which this process is conducted.


Asunto(s)
Eucariontes/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Factores de Iniciación de Péptidos/metabolismo , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Eucariontes/genética , Humanos
2.
Cell ; 166(4): 963-976, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27477511

RESUMEN

Pancreatic cancer is a deadly malignancy that lacks effective therapeutics. We previously reported that oncogenic Kras induced the redox master regulator Nfe2l2/Nrf2 to stimulate pancreatic and lung cancer initiation. Here, we show that NRF2 is necessary to maintain pancreatic cancer proliferation by regulating mRNA translation. Specifically, loss of NRF2 led to defects in autocrine epidermal growth factor receptor (EGFR) signaling and oxidation of specific translational regulatory proteins, resulting in impaired cap-dependent and cap-independent mRNA translation in pancreatic cancer cells. Combined targeting of the EGFR effector AKT and the glutathione antioxidant pathway mimicked Nrf2 ablation to potently inhibit pancreatic cancer ex vivo and in vivo, representing a promising synthetic lethal strategy for treating the disease.


Asunto(s)
Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias Pancreáticas/metabolismo , Biosíntesis de Proteínas , Animales , Comunicación Autocrina , Cisteína/metabolismo , Glutatión/metabolismo , Humanos , Ratones , Organoides/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal
3.
Nat Rev Mol Cell Biol ; 19(12): 791-807, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30038383

RESUMEN

Advances in sequencing and high-throughput techniques have provided an unprecedented opportunity to interrogate human diseases on a genome-wide scale. The list of disease-causing mutations is expanding rapidly, and mutations affecting mRNA translation are no exception. Translation (protein synthesis) is one of the most complex processes in the cell. The orchestrated action of ribosomes, tRNAs and numerous translation factors decodes the information contained in mRNA into a polypeptide chain. The intricate nature of this process renders it susceptible to deregulation at multiple levels. In this Review, we summarize current evidence of translation deregulation in human diseases other than cancer. We discuss translation-related diseases on the basis of the molecular aberration that underpins their pathogenesis (including tRNA dysfunction, ribosomopathies, deregulation of the integrated stress response and deregulation of the mTOR pathway) and describe how deregulation of translation generates the phenotypic variability observed in these disorders.


Asunto(s)
Enfermedad/genética , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología , Animales , Variación Biológica Poblacional/genética , Humanos , Factores de Iniciación de Péptidos/genética , ARN Mensajero/genética , ARN de Transferencia/genética , Ribosomas/genética , Estrés Fisiológico/genética , Serina-Treonina Quinasas TOR/genética
4.
Nat Immunol ; 18(9): 1046-1057, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28714979

RESUMEN

Translation is a critical process in protein synthesis, but translational regulation in antigen-specific T cells in vivo has not been well defined. Here we have characterized the translatome of virus-specific CD8+ effector T cells (Teff cells) during acute infection of mice with lymphocytic choriomeningitis virus (LCMV). Antigen-specific T cells exerted dynamic translational control of gene expression that correlated with cell proliferation and stimulation via the T cell antigen receptor (TCR). The translation of mRNAs that encode translation machinery, including ribosomal proteins, was upregulated during the T cell clonal-expansion phase, followed by inhibition of the translation of those transcripts when the CD8+ Teff cells stopped dividing just before the contraction phase. That translational suppression was more pronounced in terminal effector cells than in memory precursor cells and was regulated by antigenic stimulation and signals from the kinase mTOR. Our studies show that translation of transcripts encoding ribosomal proteins is regulated during the differentiation of CD8+ Teff cells and might have a role in fate 'decisions' involved in the formation of memory cells.


Asunto(s)
Infecciones por Arenaviridae/inmunología , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/inmunología , Biosíntesis de Proteínas/inmunología , Animales , Infecciones por Arenaviridae/genética , Infecciones por Arenaviridae/metabolismo , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular/genética , Citometría de Flujo , Regulación de la Expresión Génica , Memoria Inmunológica/inmunología , Interferón gamma/inmunología , Virus de la Coriomeningitis Linfocítica , Ratones , Biosíntesis de Proteínas/genética , ARN Mensajero/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Serina-Treonina Quinasas TOR/inmunología
5.
Cell ; 158(6): 1238-1239, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25215483

RESUMEN

Transfer RNAs (tRNAs) deliver amino acids to the ribosome during mRNA translation. Gingold et al. now provide evidence that alterations in the cellular tRNA repertoire are tightly coordinated with changes in mRNA expression. These changes in the tRNA repertoire dictate translational programs that distinguish differentiating from proliferating cells.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Biosíntesis de Proteínas , ARN de Transferencia/genética , Humanos
6.
Cell ; 157(1): 26-40, 2014 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-24679524

RESUMEN

The subcellular position of a protein is a key determinant of its function. Mounting evidence indicates that RNA localization, where specific mRNAs are transported subcellularly and subsequently translated in response to localized signals, is an evolutionarily conserved mechanism to control protein localization. On-site synthesis confers novel signaling properties to a protein and helps to maintain local proteome homeostasis. Local translation plays particularly important roles in distal neuronal compartments, and dysregulated RNA localization and translation cause defects in neuronal wiring and survival. Here, we discuss key findings in this area and possible implications of this adaptable and swift mechanism for spatial control of gene function.


Asunto(s)
Biosíntesis de Proteínas , Proteínas/genética , Proteínas/metabolismo , Transporte de ARN , ARN Mensajero/metabolismo , Animales , Humanos , Enfermedades del Sistema Nervioso/embriología , Enfermedades del Sistema Nervioso/metabolismo , Proteínas/química
7.
Mol Cell ; 81(2): 398-407.e4, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33340489

RESUMEN

Mechanistic target of rapamycin complex 1 (mTORC1) controls cell growth and proliferation by sensing fluctuations in environmental cues such as nutrients, growth factors, and energy levels. The Rag GTPases (Rags) serve as a critical module that signals amino acid (AA) availability to modulate mTORC1 localization and activity. Recent studies have demonstrated how AAs regulate mTORC1 activity through Rags. Here, we uncover an unconventional pathway that activates mTORC1 in response to variations in threonine (Thr) levels via mitochondrial threonyl-tRNA synthetase TARS2. TARS2 interacts with inactive Rags, particularly GTP-RagC, leading to increased GTP loading of RagA. mTORC1 activity in cells lacking TARS2 is resistant to Thr repletion, showing that TARS2 is necessary for Thr-dependent mTORC1 activation. The requirement of TARS2, but not cytoplasmic threonyl-tRNA synthetase TARS, for this effect demonstrates an additional layer of complexity in the regulation of mTORC1 activity.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Mitocondrias/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Treonina-ARNt Ligasa/genética , Treonina/metabolismo , Regulación de la Expresión Génica , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína Reguladora Asociada a mTOR/genética , Proteína Reguladora Asociada a mTOR/metabolismo , Transducción de Señal , Treonina-ARNt Ligasa/antagonistas & inhibidores , Treonina-ARNt Ligasa/metabolismo
8.
Mol Cell ; 81(6): 1187-1199.e5, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33581076

RESUMEN

Type I interferons (IFNs) are critical cytokines in the host defense against invading pathogens. Sustained production of IFNs, however, is detrimental to the host, as it provokes autoimmune diseases. Thus, the expression of IFNs is tightly controlled. We report that the mRNA 5' cap-binding protein 4EHP plays a key role in regulating type I IFN concomitant with controlling virus replication, both in vitro and in vivo. Mechanistically, 4EHP suppresses IFN-ß production by effecting the miR-34a-induced translational silencing of Ifnb1 mRNA. miR-34a is upregulated by both RNA virus infection and IFN-ß induction, prompting a negative feedback regulatory mechanism that represses IFN-ß expression via 4EHP. These findings demonstrate the direct involvement of 4EHP in virus-induced host response, underscoring a critical translational silencing mechanism mediated by 4EHP and miR-34a to impede sustained IFN production. This study highlights an intrinsic regulatory function for miRNA and the translation machinery in maintaining host homeostasis.


Asunto(s)
Factor 4E Eucariótico de Iniciación/inmunología , Inmunidad Innata , MicroARNs/inmunología , Biosíntesis de Proteínas/inmunología , Infecciones por Virus ARN/inmunología , Virus ARN/inmunología , Animales , Factor 4E Eucariótico de Iniciación/genética , Células HEK293 , Humanos , Interferón beta/genética , Interferón beta/inmunología , Ratones , Ratones Transgénicos , MicroARNs/genética , Infecciones por Virus ARN/genética , Virus ARN/genética
9.
Nat Immunol ; 17(5): 514-522, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27043414

RESUMEN

Cytosolic DNA-mediated activation of the transcription factor IRF3 is a key event in host antiviral responses. Here we found that infection with DNA viruses induced interaction of the metabolic checkpoint kinase mTOR downstream effector and kinase S6K1 and the signaling adaptor STING in a manner dependent on the DNA sensor cGAS. We further demonstrated that the kinase domain, but not the kinase function, of S6K1 was required for the S6K1-STING interaction and that the TBK1 critically promoted this process. The formation of a tripartite S6K1-STING-TBK1 complex was necessary for the activation of IRF3, and disruption of this signaling axis impaired the early-phase expression of IRF3 target genes and the induction of T cell responses and mucosal antiviral immunity. Thus, our results have uncovered a fundamental regulatory mechanism for the activation of IRF3 in the cytosolic DNA pathway.


Asunto(s)
ADN/inmunología , Factor 3 Regulador del Interferón/inmunología , Proteínas de la Membrana/inmunología , Proteínas Quinasas S6 Ribosómicas 90-kDa/inmunología , Adenoviridae/genética , Adenoviridae/inmunología , Animales , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Células Cultivadas , Citosol/inmunología , Citosol/metabolismo , Citosol/virología , ADN/genética , ADN/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células HEK293 , Herpes Simple/inmunología , Herpes Simple/virología , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/fisiología , Humanos , Inmunización/métodos , Immunoblotting , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/inmunología , Nucleotidiltransferasas/metabolismo , Ovalbúmina/genética , Ovalbúmina/inmunología , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo
10.
Mol Cell ; 77(6): 1176-1192.e16, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31999954

RESUMEN

Microexons represent the most highly conserved class of alternative splicing, yet their functions are poorly understood. Here, we focus on closely related neuronal microexons overlapping prion-like domains in the translation initiation factors, eIF4G1 and eIF4G3, the splicing of which is activity dependent and frequently disrupted in autism. CRISPR-Cas9 deletion of these microexons selectively upregulates synaptic proteins that control neuronal activity and plasticity and further triggers a gene expression program mirroring that of activated neurons. Mice lacking the Eif4g1 microexon display social behavior, learning, and memory deficits, accompanied by altered hippocampal synaptic plasticity. We provide evidence that the eIF4G microexons function as a translational brake by causing ribosome stalling, through their propensity to promote the coalescence of cytoplasmic granule components associated with translation repression, including the fragile X mental retardation protein FMRP. The results thus reveal an autism-disrupted mechanism by which alternative splicing specializes neuronal translation to control higher order cognitive functioning.


Asunto(s)
Trastorno Autístico/fisiopatología , Disfunción Cognitiva/patología , Factor 4G Eucariótico de Iniciación/fisiología , Exones/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Neuroblastoma/patología , Neuronas/patología , Animales , Conducta Animal , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neurogénesis , Neuronas/metabolismo , Biosíntesis de Proteínas , Empalme del ARN , Células Tumorales Cultivadas
11.
Nature ; 590(7845): 315-319, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33328636

RESUMEN

Effective pharmacotherapy for major depressive disorder remains a major challenge, as more than 30% of patients are resistant to the first line of treatment (selective serotonin reuptake inhibitors)1. Sub-anaesthetic doses of ketamine, a non-competitive N-methyl-D-aspartate receptor antagonist2,3, provide rapid and long-lasting antidepressant effects in these patients4-6, but the molecular mechanism of these effects remains unclear7,8. Ketamine has been proposed to exert its antidepressant effects through its metabolite (2R,6R)-hydroxynorketamine ((2R,6R)-HNK)9. The antidepressant effects of ketamine and (2R,6R)-HNK in rodents require activation of the mTORC1 kinase10,11. mTORC1 controls various neuronal functions12, particularly through cap-dependent initiation of mRNA translation via the phosphorylation and inactivation of eukaryotic initiation factor 4E-binding proteins (4E-BPs)13. Here we show that 4E-BP1 and 4E-BP2 are key effectors of the antidepressant activity of ketamine and (2R,6R)-HNK, and that ketamine-induced hippocampal synaptic plasticity depends on 4E-BP2 and, to a lesser extent, 4E-BP1. It has been hypothesized that ketamine activates mTORC1-4E-BP signalling in pyramidal excitatory cells of the cortex8,14. To test this hypothesis, we studied the behavioural response to ketamine and (2R,6R)-HNK in mice lacking 4E-BPs in either excitatory or inhibitory neurons. The antidepressant activity of the drugs is mediated by 4E-BP2 in excitatory neurons, and 4E-BP1 and 4E-BP2 in inhibitory neurons. Notably, genetic deletion of 4E-BP2 in inhibitory neurons induced a reduction in baseline immobility in the forced swim test, mimicking an antidepressant effect. Deletion of 4E-BP2 specifically in inhibitory neurons also prevented the ketamine-induced increase in hippocampal excitatory neurotransmission, and this effect concurred with the inability of ketamine to induce a long-lasting decrease in inhibitory neurotransmission. Overall, our data show that 4E-BPs are central to the antidepressant activity of ketamine.


Asunto(s)
Antidepresivos/farmacología , Factor 4E Eucariótico de Iniciación/metabolismo , Ketamina/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Trastorno Depresivo Mayor/tratamiento farmacológico , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Ketamina/análogos & derivados , Ketamina/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Mutación , Inhibición Neural/efectos de los fármacos , Inhibición Neural/genética , Neuronas/clasificación , Neuronas/citología , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Transmisión Sináptica/efectos de los fármacos
12.
Proc Natl Acad Sci U S A ; 121(31): e2407546121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39042682

RESUMEN

Fragile X syndrome (FXS) is the most common genetic cause of autism spectrum disorder engendered by transcriptional silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene. Given the early onset of behavioral and molecular changes, it is imperative to know the optimal timing for therapeutic intervention. Case reports documented benefits of metformin treatment in FXS children between 2 and 14 y old. In this study, we administered metformin from birth to Fmr1-/y mice which corrected up-regulated mitogen-2 activated protein kinase/extracellular signal-regulated kinase and mammalian/mechanistic target of rapamycin complex 1 signaling pathways and specific synaptic mRNA-binding targets of FMRP. Metformin rescued increased number of calls in ultrasonic vocalization and repetitive behavior in Fmr1-/y mice. Our findings demonstrate that in mice, early-in-life metformin intervention is effective in treating FXS pathophysiology.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Metformina , Metformina/farmacología , Metformina/uso terapéutico , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Síndrome del Cromosoma X Frágil/metabolismo , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Ratones , Masculino , Ratones Noqueados , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos
13.
Proc Natl Acad Sci U S A ; 121(31): e2407472121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39047038

RESUMEN

The integrated stress response (ISR), a pivotal protein homeostasis network, plays a critical role in the formation of long-term memory (LTM). The precise mechanism by which the ISR controls LTM is not well understood. Here, we report insights into how the ISR modulates the mnemonic process by using targeted deletion of the activating transcription factor 4 (ATF4), a key downstream effector of the ISR, in various neuronal and non-neuronal cell types. We found that the removal of ATF4 from forebrain excitatory neurons (but not from inhibitory neurons, cholinergic neurons, or astrocytes) enhances LTM formation. Furthermore, the deletion of ATF4 in excitatory neurons lowers the threshold for the induction of long-term potentiation, a cellular model for LTM. Transcriptomic and proteomic analyses revealed that ATF4 deletion in excitatory neurons leads to upregulation of components of oxidative phosphorylation pathways, which are critical for ATP production. Thus, we conclude that ATF4 functions as a memory repressor selectively within excitatory neurons.


Asunto(s)
Factor de Transcripción Activador 4 , Memoria a Largo Plazo , Neuronas , Animales , Ratones , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Astrocitos/metabolismo , Potenciación a Largo Plazo , Memoria a Largo Plazo/fisiología , Ratones Noqueados , Neuronas/metabolismo , Prosencéfalo/metabolismo , Masculino
14.
Nat Immunol ; 15(6): 503-11, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24840981

RESUMEN

Selective translational control of gene expression is emerging as a principal mechanism for the regulation of protein abundance that determines a variety of functions in both the adaptive immune system and the innate immune system. The translation-initiation factor eIF4E acts as a node for such regulation, but non-eIF4E mechanisms are also prevalent. Studies of 'translatomes' (genome-wide pools of translated mRNA) have facilitated mechanistic discoveries by identifying key regulatory components, including transcription factors, that are under translational control. Here we review the current knowledge on mechanisms that regulate translation and thereby modulate immunological function. We further describe approaches for measuring and analyzing translatomes and how such powerful tools can facilitate future insights on the role of translational control in the immune system.


Asunto(s)
Regulación de la Expresión Génica/genética , Sistema Inmunológico/inmunología , Biosíntesis de Proteínas/genética , Transcripción Genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Proteínas de Ciclo Celular , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/inmunología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos/genética , Fosfoproteínas/genética , Fosfoproteínas/inmunología , Biosíntesis de Proteínas/inmunología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Serina-Treonina Quinasas TOR/genética
15.
Cell ; 145(3): 333-4, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21529706

RESUMEN

The ribosome plays a universally conserved role in catalyzing protein synthesis. Kondrashov et al. (2011) now provide evidence that the loss of function of ribosomal protein L38 in mice leads to a selective reduction in the translation of Hox mRNAs, thus suggesting that ribosomal proteins play a critical role during embryonic development.

16.
Nature ; 586(7829): 412-416, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33029011

RESUMEN

An important tenet of learning and memory is the notion of a molecular switch that promotes the formation of long-term memory1-4. The regulation of proteostasis is a critical and rate-limiting step in the consolidation of new memories5-10. One of the most effective and prevalent ways to enhance memory is by regulating the synthesis of proteins controlled by the translation initiation factor eIF211. Phosphorylation of the α-subunit of eIF2 (p-eIF2α), the central component of the integrated stress response (ISR), impairs long-term memory formation in rodents and birds11-13. By contrast, inhibiting the ISR by mutating the eIF2α phosphorylation site, genetically11 and pharmacologically inhibiting the ISR kinases14-17, or mimicking reduced p-eIF2α with the ISR inhibitor ISRIB11, enhances long-term memory in health and disease18. Here we used molecular genetics to dissect the neuronal circuits by which the ISR gates cognitive processing. We found that learning reduces eIF2α phosphorylation in hippocampal excitatory neurons and a subset of hippocampal inhibitory neurons (those that express somatostatin, but not parvalbumin). Moreover, ablation of p-eIF2α in either excitatory or somatostatin-expressing (but not parvalbumin-expressing) inhibitory neurons increased general mRNA translation, bolstered synaptic plasticity and enhanced long-term memory. Thus, eIF2α-dependent mRNA translation controls memory consolidation via autonomous mechanisms in excitatory and somatostatin-expressing inhibitory neurons.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Hipocampo/citología , Consolidación de la Memoria , Neuronas/metabolismo , Somatostatina/metabolismo , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Factor 2 Eucariótico de Iniciación/deficiencia , Factor 2 Eucariótico de Iniciación/genética , Potenciales Postsinápticos Excitadores , Hipocampo/fisiología , Potenciación a Largo Plazo , Masculino , Memoria a Largo Plazo , Ratones , Ratones Endogámicos C57BL , Inhibición Neural , Plasticidad Neuronal , Parvalbúminas , Fosforilación , Células Piramidales/fisiología , Transmisión Sináptica
17.
Nucleic Acids Res ; 52(3): 1064-1079, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38038264

RESUMEN

mRNA translation is a fundamental process for life. Selection of the translation initiation site (TIS) is crucial, as it establishes the correct open reading frame for mRNA decoding. Studies in vertebrate mRNAs discovered that a purine at -3 and a G at +4 (where A of the AUG initiator codon is numbered + 1), promote TIS recognition. However, the TIS context in other eukaryotes has been poorly experimentally analyzed. We analyzed in vitro the influence of the -3, -2, -1 and + 4 positions of the TIS context in rabbit, Drosophila, wheat, and yeast. We observed that -3A conferred the best translational efficiency across these species. However, we found variability at the + 4 position for optimal translation. In addition, the Kozak motif that was defined from mammalian cells was only weakly predictive for wheat and essentially non-predictive for yeast. We discovered eight conserved sequences that significantly disfavored translation. Due to the big differences in translational efficiency observed among weak TIS context sequences, we define a novel category that we termed 'barren AUG context sequences (BACS)', which represent sequences disfavoring translation. Analysis of mRNA-ribosomal complexes structures provided insights into the function of BACS. The gene ontology of the BACS-containing mRNAs is presented.


Asunto(s)
Codón Iniciador , Secuencia Conservada , Biosíntesis de Proteínas , Animales , Conejos , Codón Iniciador/genética , Mamíferos/genética , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/metabolismo , Levaduras , Eucariontes/genética , Eucariontes/metabolismo
18.
Proc Natl Acad Sci U S A ; 120(25): e2300008120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307456

RESUMEN

mRNA translation initiation plays a critical role in learning and memory. The eIF4F complex, composed of the cap-binding protein eIF4E, ATP-dependent RNA helicase eIF4A, and scaffolding protein eIF4G, is a pivotal factor in the mRNA translation initiation process. eIF4G1, the major paralogue of the three eIF4G family members, is indispensable for development, but its function in learning and memory is unknown. To study the role of eIF4G1 in cognition, we used an eIF4G1 haploinsufficient (eIF4G1-1D) mouse model. The axonal arborization of eIF4G1-1D primary hippocampal neurons was significantly disrupted, and the mice displayed impairment in hippocampus-dependent learning and memory. Translatome analysis showed that the translation of mRNAs encoding proteins of the mitochondrial oxidative phosphorylation (OXPHOS) system was decreased in the eIF4G1-1D brain, and OXPHOS was decreased in eIF4G1-silenced cells. Thus, eIF4G1-mediated mRNA translation is crucial for optimal cognitive function, which is dependent on OXPHOS and neuronal morphogenesis.


Asunto(s)
Factor 4G Eucariótico de Iniciación , Fosforilación Oxidativa , Animales , Ratones , ARN Mensajero , Iniciación de la Cadena Peptídica Traduccional , Morfogénesis , ADN Helicasas
19.
Proc Natl Acad Sci U S A ; 120(49): e2308671120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38015848

RESUMEN

Activation of neuronal protein synthesis upon learning is critical for the formation of long-term memory. Here, we report that learning in the contextual fear conditioning paradigm engenders a decrease in eIF2α (eukaryotic translation initiation factor 2) phosphorylation in astrocytes in the hippocampal CA1 region, which promotes protein synthesis. Genetic reduction of eIF2α phosphorylation in hippocampal astrocytes enhanced contextual and spatial memory and lowered the threshold for the induction of long-lasting plasticity by modulating synaptic transmission. Thus, learning-induced dephosphorylation of eIF2α in astrocytes bolsters hippocampal synaptic plasticity and consolidation of long-term memories.


Asunto(s)
Astrocitos , Potenciación a Largo Plazo , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/genética , Hipocampo/fisiología , Biosíntesis de Proteínas , Región CA1 Hipocampal , Memoria a Largo Plazo/fisiología
20.
Annu Rev Biochem ; 79: 351-79, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20533884

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNAs that extensively regulate gene expression in animals, plants, and protozoa. miRNAs function posttranscriptionally by usually base-pairing to the mRNA 3'-untranslated regions to repress protein synthesis by mechanisms that are not fully understood. In this review, we describe principles of miRNA-mRNA interactions and proteins that interact with miRNAs and function in miRNA-mediated repression. We discuss the multiple, often contradictory, mechanisms that miRNAs have been reported to use, which cause translational repression and mRNA decay. We also address the issue of cellular localization of miRNA-mediated events and a role for RNA-binding proteins in activation or relief of miRNA repression.


Asunto(s)
MicroARNs/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , MicroARNs/química , Estabilidad del ARN , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA