Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 3465, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38342931

RESUMEN

The freezing damage of rock tunnels in cold region involves ice-water phase change and complicated interaction of Thermo-Hydro-Mechanical (THM) field. Taking the fractured rock mass of cold region tunnels as research subject, the THM coupling model of cold region tunnels was established, which is based on the seepage mechanics, heat transfer theory, damage mechanics and equivalent continuum theory. This model could reflect the anisotropic properties of deformation, water migration and heat transfer caused by the initial fracture of rock mass. The construction and operation processes of a rock tunnel in cold region were simulated, and results were compared with the measured value and predecessor's achievements. It shows that proposed model could reflect the anisotropic property of surrounding rock and the simulated deformation and stress are not symmetrical. Compared with the literature, the calculated results in this paper are closer to the measured values. The insulating layer has a significant effect on the stress of the supporting structures. The maximum tension stress of the lining is 4.5 times as that without insulating layer, and the lining will be destroyed for the overlarge tension stress.

2.
Sci Rep ; 14(1): 9608, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671207

RESUMEN

Mountain tunnels portal often have to pass through slope terrain unavoidably, thus forming a shallow buried bias tunnel. During the construction of shallow buried bias tunnel, disasters such as slope sliding and tunnel collapse frequently occur. The failure mode of surrounding rock obtained by current research is based on the limit equilibrium theory, which cannot reflect the progressive failure characteristics of the surrounding rock of shallow buried bias tunnel. In order to reveal the failure mechanism of the gradual instability of surrounding rock of shallow buried bias tunnel, the problem of gradual failure of the surrounding rock is reduced to an elastic-plastic analysis problem for surrounding rock considering the strain-softening characteristics. Based on the elastic-plastic analysis of the failure process of shallow buried bias tunnel, MATLAB was used to compile a program to read the finite-difference calculation result file, extract the effective information such as shear strain and tensile strain at the center point of each unit, and establish the analysis method of the progressive failure mode of shallow buried bias tunnel. The reliability of the method proposed was verified by comparing the failure process of the model test with the development process of shear strain increment. Under the condition of no support, the formation mechanism of failure plane of surrounding rock on both sides of shallow buried bias tunnel is different. The shallow buried side is the shear failure plane formed by the collapse of surrounding rock, while the deep buried side of the tunnel is the shear failure plane formed by the collapse of surrounding rock and slope sliding. Under the conditions of excavation and support, the failure plane of the shallow buried bias tunnel can be divided into three parts according to the formation sequence and reasons. The part I is the failure plane, which is formed by active shear under the influence of tunnel excavation. The part II is the failure plane formed by tensile crack of slope top. The part III is the failure plane formed by passive shear under the push of the soil in the upper part of the slope.

3.
Sci Rep ; 14(1): 17512, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080436

RESUMEN

In geological engineering and related fields, accurately and quickly identifying lithology and assessing rock strength are crucial for ensuring structural safety and optimizing design. Traditional rock strength assessment methods mainly rely on field sampling and laboratory tests, such as uniaxial compressive strength (UCS) tests and velocity tests. Although these methods provide relatively accurate rock strength data, they are complex, time-consuming, and unable to reflect real-time changes in field conditions. Therefore, this study proposes a new method based on artificial intelligence and neural networks to improve the efficiency and accuracy of rock strength assessments. This research utilizes a Transformer + UNet hybrid model for lithology identification and an optimized ResNet-18 model for determining rock weathering degrees, thereby correcting the strength of the tunnel face surrounding rock. Experimental results show that the Transformer + UNet hybrid model achieves an accuracy of 95.57% in lithology identification tasks, while the optimized ResNet model achieves an accuracy of 96.13% in rock weathering degree determination. Additionally, the average relative error in tunnel face strength detection results is only 9.33%, validating the feasibility and effectiveness of this method in practical engineering applications. The multi-model neural network system developed in this study significantly enhances prediction accuracy and efficiency, providing robust scientific decision support for tunnel construction, thereby improving construction safety and economy.

4.
Sci Rep ; 13(1): 4113, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914825

RESUMEN

Collapsibility and structural are two of the typical characteristics of natural undisturbed loess. It is of great significance to effectively simulate the collapsibility and structural of natural loess by preparing artificially loess. However, the existing methods of artificially preparing collapsible loess are complex, and the collapsibility of the prepared samples is difficult to control. In this paper, the collapsibility mechanism of loess was re-analyzed, and on this basis, a new method for preparing artificial collapsible loess using remolded loess, industrial salt, CaO particles and gypsum powder was proposed. The basic principle is: the CaO particles have structural strength and would transfer to Ca(OH)2 after soaking, this progress can simulate the disappearance of loess structural strength; The dissolution of industrial salt can simulate the collapse of loess internal pores, the collapsibility of artificial loess can be adjusted by adjusting the percentage of industrial salt; the gypsum powder can simulate the cementation of loess as a bonding material. The shear test, consolidation test and collapsibility test of artificially prepared loess and undisturbed loess were carried out. The test results of artificial loess were compared with undisturbed loess. The results show that: the plastic limit and liquid limit of the artificially prepared loess is smaller than that of the undisturbed loess; The optimal moisture content and maximum dry density are close to that of the undisturbed loess; The collapsibility coefficient of artificial prepared samples increases first and then decreases with the increase of load level, and gradually increases with the increase of industrial salt particle content; The structural parameters of artificially prepared loess samples first increase and then decrease with the shear process, but the structural parameters of artificial prepared loess and undisturbed loess are different under different confining pressure conditions.

5.
Sci Rep ; 13(1): 7585, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37165050

RESUMEN

During the construction of mountain tunnels, there are often various intricate and mutable potential hazards, the management and control of which are crucial to ensuring the safety of such construction. With the rapid advancement of engineering information technologies, including Building Information Model (BIM), the internet, big data, and cloud computing, dynamic management of mountain tunnel construction will inevitably become a prevailing trend. This paper proposes a new digital approach to realize the informatization and visualization of risk management in mountain tunnel construction, by combining monitoring measurement with advanced geological prediction based on BIM technology. The proposed approach suggests a BIM-based digital platform architecture for mountain tunnel construction, which is comprised of five layers-basic, model, data, application, and user. The integration of these five layers can realize risk management information during the construction of mountain tunnels. In addition, a set of dynamic risk management systems, including risk monitoring, identification, and assessment, can be established based on the digital platform. The digital platform and dynamic risk management system proposed in this paper have certain advantages in the construction of mountain tunnels, providing a new and significant way for the management of safety risks in such construction projects.

6.
Sci Prog ; 103(3): 36850420932067, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32597711

RESUMEN

The surrounding rock may become unstable or even fall down and the initial support may crack and be destroyed when the construction method of the underground excavation tunnel is not properly selected in the turn line of metro. . A section of the Santunbei turn line of Urumqi Metro Line 1# was taken as the engineering background. The proposed construction method was analyzed by numerical simulation. Numerical analysis shows that the final surface settlement caused by the proposed construction method is 3.0 mm and the horizontal convergence is 3.2 mm. It also turns out that the proposed construction method causes less deformation, and the method can be applied to the construction of the small interval tunnel in the Santunbei turn line of metro. The rationality of the method and numerical model was further verified by comparison between the monitored data of surface settlement, horizontal convergence and vault sinking, and numerical simulation results. Finally, the deformation and stress of the six construction methods were compared. The deformation and stress caused by the six construction methods are almost the same. It indicates that the construction spacing between the left and right tunnels does not affect the safety of tunnel construction. Therefore, the appropriate construction spacing could be selected according to the resource configuration, instead of deformation and stress.

7.
Mater Sci Eng C Mater Biol Appl ; 73: 596-602, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28183650

RESUMEN

Hydroxyapatite (HA) is the major inorganic component of natural bone tissue. As an essential trace element, selenium involves in antioxidation and anticancer of human body. So far, ion-doped hydroxyapatites (HAs) are widely investigated owing to their great applications in field of biomaterial, biological labeling. In this paper, series of monodisperse HA doped with SeO32- (SeHA) was successfully synthesized based on the liquid-solid-solution (LSS) strategy. The obtained samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and energy-dispersive spectrometer (EDS). The results indicated that the SeO32- doping level of the Se/(P+Se) molar ratio of 0-0.4 can be requisitely controlled, and the morphology of SeHA nanoparticles varied from nanorods to nanoneedles with increasing Se/(P+Se) molar ratio. Significantly, the as-synthesized SeHA nanocrystals exhibit a low cytotoxicity for osteoblastic cells, showing exciting potentials for application in artificial scaffold materials inhibiting of tumor growth in bone.


Asunto(s)
Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/farmacología , Durapatita/síntesis química , Durapatita/farmacología , Ensayo de Materiales , Selenio/química , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Forma de la Célula/efectos de los fármacos , Durapatita/química , Ratones , Nanopartículas/química , Nanopartículas/ultraestructura , Selenio/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
8.
Springerplus ; 5(1): 1634, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27722052

RESUMEN

In order to investigate the mechanical properties of lime mudstone, conventional triaxial compression tests under different confining pressures (0, 5, 15 and 20 MPa) are performed on lime mudstone samples. The test results show that, from the overall perspective of variation law, the axial peak stress, axial peak strain and elastic modulus of lime mudstone tend to gradually increase with increasing confining pressure. In the range of tested confining pressure, the variations in axial peak stress and elastic modulus with confining pressure can be described with linear functions; while the variation in axial peak strain with confining pressure can be reflected with a power function. To describe the axial stress-strain behavior in failure process of lime mudstone, a new constitutive model is proposed, with the model characteristics analyzed and the parameter determination method put forward. Compared with Wang' model, only one parameter n is added to the new model. The comparison of predicted curves from the model and test data indicates that the new model can preferably simulate the strain softening property of lime mudstone and the axial stress-strain response in rock failure process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA