Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 26(13): 17477-17486, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-30119559

RESUMEN

We have developed the new hybrid adaptive X-ray mirror based on mechanical and piezo-driven deformation to realize precise shape controllability on a long-length mirror. The mechanical bender approximately provides the required ellipse, while the piezoelectric actuators attached to the mirror correct very small residual errors to satisfy the diffraction-limited condition. The mechanical bender significantly reduces the role of the piezoelectric actuator, resulting in the suppression of accuracy degradation due to the drift and/or junction effect of the piezoelectric actuators. In addition, line focusing was demonstrated with two different numerical apertures at SPring-8, and the obtained beam sizes were 127 and 253 nm (FWHM), which agree well with the diffraction-limited sizes.

2.
Rev Sci Instrum ; 92(12): 123706, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34972426

RESUMEN

A hybrid deformable x-ray mirror consisting of a mechanical bender and a bimorph deformable mirror has been developed to realize adaptive optical systems, such as zoom condenser optics, for synchrotron-radiation-based x-ray microscopy. In the developed system, both bending mechanisms comprehensively contribute to the formation of the target mirror shape and can narrow the role of piezoelectric actuators, thereby enabling a more stable operation. In this study, the behavior of the bimorph mirror under the clamped condition was investigated, and the sharing of the deformation amount for each bending mechanism was optimized to minimize the amplitude of the voltage distribution of the bimorph mirror.

4.
Sci Rep ; 4: 4381, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24625746

RESUMEN

Unconventional Cooper pairing originating from spin or orbital fluctuations has been proposed for iron-based superconductors. Such pairing may be enhanced by quasi-nesting of two-dimensional electron and hole-like Fermi surfaces (FS), which is considered an important ingredient for superconductivity at high critical temperatures (high-Tc). However, the dimensionality of the FS varies for hole and electron-doped systems, so the precise importance of this feature for high-Tc materials remains unclear. Here we demonstrate a phase of electron-doped CaFe2As2 (La and P co-doped CaFe2As2) with Tc = 45 K, which is the highest Tc found for the AEFe2As2 bulk superconductors (122-type; AE = Alkaline Earth), possesses only cylindrical hole- and electron-like FSs. This result indicates that FS topology consisting only of two-dimensional sheets is characteristic of both hole- and electron-doped 122-type high-Tc superconductors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA