Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(31): e2201014119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35905319

RESUMEN

Diatoms are single-celled organisms with a cell wall made of silica, called the frustule. Even though their elaborate patterns have fascinated scientists for years, little is known about the biological and physical mechanisms underlying their organization. In this work, we take a top-down approach and examine the micrometer-scale organization of diatoms from the Coscinodiscus family. We find two competing tendencies of organization, which appear to be controlled by distinct biological pathways. On one hand, micrometer-scale pores organize locally on a triangular lattice. On the other hand, lattice vectors tend to point globally toward a center of symmetry. This competition results in a frustrated triangular lattice, populated with geometrically necessary defects whose density increases near the center.


Asunto(s)
Pared Celular , Diatomeas , Dióxido de Silicio , Pared Celular/química , Diatomeas/química , Nanoestructuras , Porosidad
2.
Langmuir ; 39(41): 14626-14637, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37797324

RESUMEN

Solutions of macromolecules can undergo liquid-liquid phase separation to form droplets with ultralow surface tension. Droplets with such low surface tension wet and spread over common surfaces such as test tubes and microscope slides, complicating in vitro experiments. The development of a universal super-repellent surface for macromolecular droplets has remained elusive because their ultralow surface tension requires low surface energies. Furthermore, the nonwetting of droplets containing proteins poses additional challenges because the surface must remain inert to a wide range of chemistries presented by the various amino acid side chains at the droplet surface. Here, we present a method to coat microscope slides with a thin transparent hydrogel that exhibits complete dewetting (contact angles θ ≈ 180°) and minimal pinning of phase-separated droplets in aqueous solution. The hydrogel is based on a swollen matrix of chemically cross-linked polyethylene glycol diacrylate of molecular weight 12 kDa (PEGDA), and can be prepared with basic chemistry laboratory equipment. The PEGDA hydrogel is a powerful tool for in vitro studies of weak interactions, dynamics, and the internal organization of phase-separated droplets in aqueous solutions.

3.
Phys Rev Lett ; 125(19): 198102, 2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33216584

RESUMEN

Lipid membranes, the barrier defining living cells and many of their subcompartments, bind to a wide variety of nano- and micrometer sized objects. In the presence of strong adhesive forces, membranes can strongly deform and wrap the particles, an essential step in crossing the membrane for a variety of healthy and disease-related processes. A large body of theoretical and numerical work has focused on identifying the physical properties that underly wrapping. Using a model system of micron-sized colloidal particles and giant unilamellar lipid vesicles with tunable adhesive forces, we measure a wrapping phase diagram and make quantitative comparisons to theoretical models. Our data are consistent with a model of membrane-particle interactions accounting for the adhesive energy per unit area, membrane bending rigidity, particle size, and vesicle radius.

4.
Adv Healthc Mater ; 11(23): e2202100, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36208079

RESUMEN

Cell-derived vesicles retain the cytoplasm and much of the native cell membrane composition. Therefore, they are attractive for investigations of membrane biophysics, drug delivery systems, and complex molecular factories. However, their fragility and aggregation limit their applications. Here, the mechanical properties and stability of giant plasma membrane vesicles (GPMVs) are enhanced by decorating them with a specifically designed diblock copolymer, cholesteryl-poly[2-aminoethyl methacrylate-b-poly(ethylene glycol) methyl ether acrylate]. When cross-linked, this polymer brush enhances the stability of the GPMVs. Furthermore, the pH-responsiveness of the copolymer layer allows for a controlled cargo loading/release, which may enable various bioapplications. Importantly, the cross-linked-copolymer GPMVs are not cytotoxic and preserve in vitro membrane integrity and functionality. This effective strategy to equip the cell-derived vesicles with stimuli-responsive cross-linkable copolymers is expected to open a new route to the stabilization of natural membrane systems and overcome barriers to biomedical applications.


Asunto(s)
Polímeros , Biofisica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA