Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Chem Res Toxicol ; 32(3): 474-483, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30701970

RESUMEN

To prevent the accumulation of reactive oxygen species and limit associated damage to biological macromolecules, cells express a variety of oxidant-detoxifying enzymes, including peroxiredoxins. In Saccharomyces cerevisiae, the peroxiredoxin Tsa1 plays a key role in peroxide clearance and maintenance of genome stability. Five homodimers of Tsa1 can assemble into a toroid-shaped decamer, with the active sites in the enzyme being shared between individual dimers in the decamer. Here, we have examined whether two conserved aromatic residues at the decamer-building interface promote Tsa1 oligomerization, enzymatic activity, and biological function. When substituting either or both of these aromatic residues at the decamer-building interface with either alanine or leucine, we found that the Tsa1 decamer is destabilized, favoring dimeric species instead. These proteins exhibit varying abilities to rescue the phenotypes of oxidant sensitivity and genomic instability in yeast lacking Tsa1 and Tsa2, with the individual leucine substitutions at this interface partially complementing the deletion phenotypes. The ability of Tsa1 decamer interface variants to partially rescue peroxidase function in deletion strains is temperature-dependent and correlates with their relative rate of reactivity with hydrogen peroxide and their ability to interact with thioredoxin. Based on the combined results of in vitro and in vivo assays, our findings indicate that multiple steps in the catalytic cycle of Tsa1 may be impaired by introducing substitutions at its decamer-building interface, suggesting a multifaceted biological basis for its assembly into decamers.


Asunto(s)
Peroxidasas/química , Peroxidasas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Dimerización , Modelos Moleculares , Programas Informáticos
2.
BMC Evol Biol ; 16: 47, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26923229

RESUMEN

BACKGROUND: Low complexity regions (LCRs) are a ubiquitous feature in genomes and yet their evolutionary history and functional roles are unclear. Previous studies have shown contrasting evidence in favor of both neutral and selective mechanisms of evolution for different sets of LCRs suggesting that modes of identification of these regions may play a role in our ability to discern their evolutionary history. To further investigate this issue, we used a multiple threshold approach to identify species-specific profiles of proteome complexity and, by comparing properties of these sets, determine the influence that starting parameters have on evolutionary inferences. RESULTS: We find that, although qualitatively similar, quantitatively each species has a unique LCR profile which represents the frequency of these regions within each genome. Inferences based on these profiles are more accurate in comparative analyses of genome complexity as they allow to determine the relative complexity of multiple genomes as well as the type of repetitiveness that is most common in each. Based on the multiple threshold LCR sets obtained, we identified predominant evolutionary mechanisms at different complexity levels, which show neutral mechanisms acting on highly repetitive LCRs (e.g., homopolymers) and selective forces becoming more important as heterogeneity of the LCRs increases. CONCLUSIONS: Our results show how inferences based on LCRs are influenced by the parameters used to identify these regions. Sets of LCRs are heterogeneous aggregates of regions that include homo- and heteropolymers and, as such, evolve according to different mechanisms. LCR profiles provide a new way to investigate genome complexity across species and to determine the driving mechanism of their evolution.


Asunto(s)
Apicomplexa/genética , Evolución Molecular , Genoma de Protozoos , Composición de Base , Biología Computacional , Modelos Lineales , Secuencias Repetitivas de Ácidos Nucleicos , Especificidad de la Especie
3.
Chem Res Toxicol ; 26(11): 1720-9, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24138115

RESUMEN

Bifunctional electrophiles have been used in various chemopreventive, chemotherapeutic, and bioconjugate applications. Many of their effects in biological systems are traceable to their reactive properties, whereby they can modify nucleophilic sites in DNA, proteins, and other cellular molecules. Previously, we found that two different bifunctional electrophiles--diethyl acetylenedicarboxylate and divinyl sulfone--exhibited a strong enhancement of toxicity when compared with analogous monofunctional electrophiles in both human colorectal carcinoma cells and baker's yeast. Here, we have compared the toxicities for a broader panel of homobifunctional electrophiles bearing diverse electrophilic centers (e.g., isothiocyanate, isocyanate, epoxide, nitrogen mustard, and aldehyde groups) to their monofunctional analogues. Each bifunctional electrophile showed at least a 3-fold enhancement of toxicity over its monofunctional counterpart, although in most cases, the differences were even more pronounced. To explain their enhanced toxicity, we tested the ability of each bifunctional electrophile to cross-link recombinant yeast thioredoxin 2 (Trx2), a known intracellular target of electrophiles. The bifunctional electrophiles were capable of cross-linking Trx2 to itself in vitro and to other proteins in cells exposed to toxic concentrations. Moreover, most cross-linkers were preferentially reactive with thiols in these experiments. Collectively, our results indicate that thiol-reactive protein cross-linkers in general are much more potent cytotoxins than analogous monofunctional electrophiles, irrespective of the electrophilic group studied.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Tiorredoxinas/química , Aldehídos/química , Aldehídos/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Reactivos de Enlaces Cruzados/toxicidad , Compuestos Epoxi/química , Compuestos Epoxi/toxicidad , Humanos , Isocianatos/química , Isocianatos/toxicidad , Mecloretamina/química , Mecloretamina/toxicidad , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA