Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 6025, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247123

RESUMEN

Porous, atomically thin graphene membranes have interesting properties for filtration and sieving applications. Here, graphene membranes are used to pump gases through nanopores using optothermal forces, enabling the study of gas flow through nanopores at frequencies above 100 kHz. At these frequencies, the motion of graphene is closely linked to the dynamic gas flow through the nanopore and can thus be used to study gas permeation at the nanoscale. By monitoring the time delay between the actuation force and the membrane mechanical motion, the permeation time-constants of various gases through pores with diameters from 10-400 nm are shown to be significantly different. Thus, a method is presented for differentiating gases based on their molecular mass and for studying gas flow mechanisms. The presented microscopic effusion-based gas sensing methodology provides a nanomechanical alternative for large-scale mass-spectrometry and optical spectrometry based gas characterisation methods.

2.
Nat Chem ; 10(10): 1001-1007, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30150726

RESUMEN

Chemical functionalization is a powerful approach to tailor the physical and chemical properties of two-dimensional (2D) materials, increase their processability and stability, tune their functionalities and, even, create new 2D materials. This is typically achieved through post-synthetic functionalization by anchoring molecules on the surface of an exfoliated 2D crystal, but it inevitably alters the long-range structural order of the material. Here we present a pre-synthetic approach that allows the isolation of crystalline, robust and magnetic functionalized monolayers of coordination polymers. A series of five isostructural layered magnetic coordination polymers based on Fe(II) centres and different benzimidazole derivatives (bearing a Cl, H, CH3, Br or NH2 side group) were first prepared. On mechanical exfoliation, 2D materials are obtained that retain their long-range structural order and exhibit good mechanical and magnetic properties. This combination, together with the possibility to functionalize their surface at will, makes them good candidates to explore magnetism in the 2D limit and to fabricate mechanical resonators for selective gas sensing.

3.
Nat Commun ; 8(1): 1253, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29093446

RESUMEN

Owing to their atomic-scale thickness, the resonances of two-dimensional (2D) material membranes show signatures of nonlinearities at forces of only a few picoNewtons. Although the linear dynamics of membranes is well understood, the exact relation between the nonlinear response and the resonator's material properties has remained elusive. Here we show a method for determining the Young's modulus of suspended 2D material membranes from their nonlinear dynamic response. To demonstrate the method, we perform measurements on graphene and MoS2 nanodrums electrostatically driven into the nonlinear regime at multiple driving forces. We show that a set of frequency response curves can be fitted using only the cubic spring constant as a fit parameter, which we then relate to the Young's modulus of the material using membrane theory. The presented method is fast, contactless, and provides a platform for high-frequency characterization of the mechanical properties of 2D materials.

4.
Phys Rev Lett ; 88(4): 047201, 2002 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-11801161

RESUMEN

High quality thin films of the ferromagnetic semiconductor EuO have been prepared and were studied using a new form of spin-resolved spectroscopy. We observed large changes in the electronic structure across the Curie and metal-insulator transition temperature. We found that these are caused by the exchange splitting of the conduction band in the ferromagnetic state, which is as large as 0.6 eV. We also present strong evidence that the bottom of the conduction band consists mainly of majority spins. This implies that doped charge carriers in EuO are practically fully spin polarized.

5.
Phys Rev Lett ; 90(24): 247005, 2003 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-12857219

RESUMEN

We report on an x-ray absorption and resonant photoemission study on single crystals of the high-T(c) cuprates La2-xSrxCuO4 and Nd(2-x)Ce(x)CuO(4-delta). Using an intrinsic energy reference, we find that the chemical potential of La2-xSrxCuO4 lies near the top of the La2CuO4 valence band whereas in Nd(2-x)Ce(x)CuO(4-delta) it is situated near the bottom of the Nd2CuO4 conduction band. The data clearly establish that the introduction of Ce in Nd2CuO4 results in electrons being doped into the CuO2 planes. We infer that the states closest to the chemical potential have a Cu 3d(10) singlet origin in Nd(2-x)Ce(x)CuO(4-delta) and a 3d(9)L singlet origin in La2-xSrxCuO4.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA